Fortran 77 Language Reference Manual

Introduction

This manual describes the Fortran 77 language specifications as implemented on the Silicon Graphics
IRIS-4D series workstation. This implementation of Fortran 77 contains full American National Standard
Institute (ANSI) Programming Language Fortran (X3.9-1978). It has extensions that provide full VMS
Fortran compatibility to the extent possible without the VMS operating system or VAX data
representation. It also contains extensions that provide partial compatibility with programs written in SVS
Fortran and Fortran 66.

This manual refers to Fortran 77 as Fortran, except where specific distinctions between Fortran 77 and
Fortran 66 are discussed.

The compiler can convert source programs written in VMS Fortran into machine programs executable
under IRD{.

Intended Audience

This manual is intended as a reference manual, rather than a tutorial, and assumes familiarity with an
algebraic language or prior exposure to Fortran.

Corequisite Publications

This manual describes the Fortran language specifications. RefeFmrtitza 77 Programmer’s Guide
for information on

« How to compile and link edit a Fortran program

« Alignments, sizes, and variable ranges for the various data types

e The coding interface between Fortran programs and programs written in C and Pascal

* File formats, run—time error handling, and other information related to the IRIX operating system

e Operating system functions and subroutines callable by Fortran programs

Refer to thdRIS-4D Series Compiler Guide information on:
e An overview of the compiler system

« Information on improving the program performance, showing how to use the profiling and
optimization facilities of the compiler system

e The dump utilities, archiver, and other tools for maintaining Fortran programs

Refer to thalbx User's Reference Manual a detailed description of the debugghry.

For information on the interface to programs written in assembly language, refefssehaly
Language Programmer’s Guide

Organization of Information

Fortran 77 Language Reference Manual — Introduction — 1

This manual contains the following chapters and appendix:

« Chapter 1, "Fortran Elements and Concepts," provides definitions for the various elements of a
Fortran program.

« Chapter 2, "Constants and Data Structures,"discusses the various types of Fortran constants and
explains a few ways data can be structured.

« Chapter 3, "Expressions," describes the formation, interpretation, and evaluation rules for each type
of Fortran expression.

» Chapter 4, "Specification Statements," summarizes the Fortran specification statements.

e Chapter 5, "Assignment and Data Statements," discusses the types of assignment statements and
explains how to use them. It also explains how to initialize variables and array elements using
DATA statements.

« Chapter 6, "Control Statements," explains the various Fortran control statements.

e Chapter 7, "Input/Output Processing," discusses the programmer-related aspects of Fortran
input/output processing.

e Chapter 8, "Input/Output Statements," describes the statements that control the transfer of data within
internal storage and between internal storage and external storage devices. It also provides an
overview of the Fortran input/output statements and lists the syntax, rules, and examples for each.

« Chapter 9, "Format Specification,"describesRIRMAT statement, field descriptors, edit
descriptors, and list-directed formatting.

e Chapter 10, "Statement Functions and Subprograms," discusses user—written subprograms and
explains the syntax and rules for defining program units.

« Chapter 11, "Compiler Options,"describes the options that affect source programs both during
compilation and at run time.

* Appendix A, "Intrinsic Functions,"lists the intrinsic functions supported.

Typographical Conventions
The following conventions and symbols are used in the text to describe the form of Fortran statements:

Bold Indicates literal command line options, filenames, keywords, function/subroutine
names, pathnames, and directory names.

Italics Represents user—defined values. Replace the item in italics with a legal value. Italics
are also used for command names, manual page names, and manual titles.

Courier Indicates command syntax, program listings, computer output, and error messages.

Courier bold
Indicates user input.

[] Enclose optional command arguments.

Fortran 77 Language Reference Manual — Introduction — 2

0 Surround arguments or are empty if the function has no arguments following
function/subroutine names. Surround manual page section in which the command is
described following IRIX commands.

Ssparates two or more optional items.
Indicates that the preceding optional items can appear more than once in succession.
IRIX shell prompt for the superuser.
% IRIX shell prompt for users other than superuser.
Here are two examples illustrating the syntax conventions.
DIMENSION a(d) [, a(d)]...

indicates that the Fortran keywdddMENSION must be written as shown, that the user—defined aftity
d) is required, and that one or morea@) can be optionally specified. Note that the pair of parentheses (
) enclosingl is required.

{STATIC | AUTOMATIC} V[, V...

indicates that either tH&TATIC orAUTOMATIC keyword must be written as shown, that the
user—defined entityis required, and that one or morevaems can be optionally specified.

Chapter 1

Fortran Elements and Concepts

This chapter contains the following subsections:

« "Fortran Character Set"

* "Data Types"

e "Collating Sequence”

e "Symbolic Names"

e "Variables"

e "Source Program Lines"

« "Statements"

e "Program Units"

* "Program Organization"

This chapter provides definitions for the various elements of a Fortran program. The Fortran language is
written using a specific set of characters that form the words, numbers, names, and expressions that make
up Fortran statements. These statements form a Fortran program. The Fortran character set, the rules for

writing Fortran statements, the main structural elements of a program, and the proper order of statements
in a program are also discussed in this chapter.

Fortran Character Set

The Fortran character set consists of 26 uppercase and 26 lowercasealpttabe{iccharacters), the
numbers 0 through @ligits), andspecialcharacters. This manual refers to letters (uppercase and
lowercase) together with the underscore (@xended alphabetitharacters. Thextended alphabetic
characters together with the digits are also referredatphanumericharacters. The complete character

setis

Letters: ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopgrstuvwxyz

Digits: 0123456789

Special Characters:

Blank
= Equal
+ Plus
- Minus
* Asterisk

Fortran 77 Language Reference Manual — Chapter 1, Fortran Elements and Concepts — 1

/ Slash

(Left parenthesis
) Right parenthesis
, Comma

Decimal point
$ Currency symbol
Apostrophe
Colon
! Exclamation point
Underscore
Quotation mark

Lowercase alphabetic characters, the exclamation point (!), the underscore (), and the double quote (")
are extensions to Fortran 77. Digits are interpreted in base 10. A special character can serve as an
operator, a part of a character constant, a part of a numeric constant, or some other function

Blank Characters

Use blank characters freely to improve the appearance and readability of Fortran statements. They have
no significance in Fortran statements, except

e in character constants

« for H and character editing in format specifications

* in Hollerith constants

< to signify an initial line when used in column 6 of source line

* when counting the total number of characters allowed in any one statement

These special considerations are discussed in detail in later sections.

Escape Sequences

Table 1-1lists escape sequences for representing non—graphic characters and for compatibility with the C
programming language.

Table 1-1 C Escape Sequences

Sequence Meaning

\n New line

\t Tab

\b Backspace
\f Form feed

Fortran 77 Language Reference Manual — Chapter 1, Fortran Elements and Concepts — 2

\0 Null

\ Apostrophe (does not terminate a string)

\" Quotation mark (does not terminate a string)
\\ \

\x X represents any character

The compiler treats the backslash character as the beginning of an escape sequence by default. To use
backslash as a normal character, compile the program witlb#o&slashoption.

Data Types

In general, there are three kinds of entities that have a data type: constants, data names, and function
names. The types of data allowed in Fortran are

« INTEGER O positive and negative integral numbers and zero
* REALUD positive and negative numbers with a fractional part and zero

« DOUBLE PRECISIONO same aREAL but using twice the storage space and possibly greater
precision

« COMPLEX O ordered pair oREAL data: real and imaginary components

« DOUBLE COMPLEX O ordered pair of double—precision data

* LOGICAL 0O Boolean data representitrge orfalse

 CHARACTER O character strings

« HOLLERITH 0O an historical data type for character definition

Together]NTEGER, REAL, DOUBLE PRECISION, COMPLEX , andDOUBLE COMPLEX
constitute the class afithmeticdata types.

The type of data is established in one of two ways: implicitly, depending on the first letter of its symbolic
name (described in this chapter), or explicitly through a type statement (described in Chapter 4). A data
value can be a variable or a constant, that is, its value either can or cannot change during the execution of
a program. An array is a sequence of data items occupying a set of consecutive bytes.

If not explicitly specified by a type statement cF@NCTION statement, the data type of a data item,
data name, or function name is determined implicitly by the first character of its symbolic name. By
default, symbolic names beginning with I, J, K, L, M, or N (uppercase or lowercase) iripRESBER
data type; names beginning with all other letters impNeAL data type. You can change or confirm the
default implicit data type corresponding to each letter of the alphabet throligfPBICIT statement
(refer to "EXTERNAL" of Chapter 4 for details).

The data type of external functions and statement functions is implicitly determined in the same manner
as above. The type of an external function can also be explicitly declaretM@TION statement.

Collating Sequence

Fortran 77 Language Reference Manual — Chapter 1, Fortran Elements and Concepts — 3

The Fortran collating sequence defines the relationship between letters and digits and is used when
comparing character strings. The collating sequence is determined by these rules:

« Aislessthan Z, and ais less than z. The listing order of the alphabetic characters specifies the
collating sequence falphabeticcharacters. The relationship between lowercase and uppercase of
the same letter is unspecified.

e Oisless than 9. The order in which digits are listed above defines the collating sequence for digits.
« Alphabetic characters and digits are not intermixed in the collating sequence.
e The blank character is less than the letter A (uppercase and lowercase) and less than the digit 0.

» The special characters given as part of the character setthsged in any specific order. There is
no specification as to where special characters occur in the collating sequence.

Symbolic Names

A symbolic name is a sequence of characters that refer to a memory location by describing its contents.
Symbolic names identify the following user—defined local and global entities:

Local variableconstantarraystatement functionintrinsic functiondummy procedure
Global common blockexternal functionsubroutinemain programblock data subprogram
Conventions

A symbolic name can contain any alphanumeric character; digits and _ (underscore) are allowed in
addition to uppercase and lowercase alphabetic characters. However, the first anaisiotea letter.

< Fortran symbolic names can contain any number of characters, but only the first 32 of these are
significant in distinguishing one symbolic name from another (standard Fortran 77 allows only 6
characters.) Symbolic names that are used externally (program names, subroutine names, function
names, common block names) are limited to 32 significant characters.

e The inclusion of the special period (.), underscore (_), and dollar sign ($) characters in symbolic
names is an enhancement to Fortran 77.

Examples of valid symbolic names are

CASH C3P0 R2D2 LONG_NAME

Examples of invalid symbolic names are

X*4 (contains a special character, *)

3CASH (first character is a digit)

Data Types of Symbolic Names

A symbolic name has a definite data type in a program unit that can be any of the following:

* BYTE

Fortran 77 Language Reference Manual — Chapter 1, Fortran Elements and Concepts - 4

« INTEGER [*1 | *2 | *4]

« REAL [*4 | *8] or DOUBLE PRECISION

« COMPLEX [*8 | *16]

e LOGICAL [*1 | *2 | *4]

« CHARACTER [*]

The optional length specifier that follows the type name determines the number of bytes of storage for the

data type. If the length specifier is omitted, the compiler uses the defaults listeHartittue 77
Programmer’s Guide

In general, wherever the usage of a given data type is allowed, it can have any internal length. One
exception is the use of integer variables for assi@@dO statements. In this case the integer variable
must be 4 bytes in length.

Data of a given type and different internal lengths can be intermixed in expressions, and the resultant
value will be the larger of the internal representations in the expression.

Note: The lengths of arguments in actual and formal parameter lisS@MMON blocks must agree
in order produce predictable results.

Scope of Symbolic Names
The following rules determine the scope of symbolic hames:

« A symbolic name that identifies a global entity, such as a common block, external function,
subroutine, main program, or block data subprogram, has the scope of an executable program. Do not
use it to identify another global entity in the same executable program.

« A symbolic name that identifies a local entity, such as an array, variable, constant, statement
function, intrinsic function, or dummy procedure, has the scope of a single program unit. Do not use
it to identify any other local entity in the same program unit.

« Do not use a symbolic name assigned to a global entity in a program unit for a local entity in the
same unit. However, you can use the name for a common block hame or an external function name
that appears inBUNCTION orENTRY statement.

Variables

A variable is an entity with a name, data type, and value. Its value is either defined or undefined at any
given time during program execution.

The variable name is a symbolic name of the data item and must conform to the rules given for symbolic
names. The type of a variable is explicitly defined in a type—statement or implicitly by the first character
of the name.

A variable cannot be used or referred to unless it has been defined through an assignment statement, input
statementDATA statement, or through association with a variable or array element that has been defined.

Fortran 77 Language Reference Manual — Chapter 1, Fortran Elements and Concepts — 5

Source Program Lines

A source program line is a sequence of character positions, @alilmdns numbered consecutively
starting from column 1 on the left.

Format
The two formats for Fortran programs are
» Fixed formall based on columns

« TAB formatd based on the tab character

Fixed Format

A Fortran line is divided into columns, with one character per column as indicated in Table 1-2

Table 1-2 Fortran Line Structure

Field Column

Statement label 1 through 5

Continuation indicator 6

Statement 7 to the end of the line or to the start of the

comment field
Comment (optional) 73 through end of line

The -col72 -col12Q -extend_sourceand -noextend_sourceommand line options are provided to
change this format. See Chapter 1 ofRbgran77 Programmer’s Guidfor details. Several of these
options can be specified in-line as describ&hapter 11, "Compiler Options."

TAB Character Formatting

Rather than aligning characters in specific columns, the TAB character can be used as an alternative field
delimiter, as follows:

1. Type the statement label and follow it with a TAB. If there is no statement label, start the line with a
TAB.

2. After the TAB, type either a statement initial line or a continuation line. A continuation line must
contain a digit (1 through 9) immediately following the TAB. If any charaxttesrthan a nonzero
digit follows the TAB, the line will be interpreted as an initial line.

3. In a continuation line beginning with a TAB followed by a nonzero digit, any characters following
the digit to the end of the line are a continuation of the current statement.

4. TAB-formatted lines do not have preassigned comment fields. All characters to the end of the line are
considered part of the statement. However, you can use an exclamation point (!) to explicitly define a
comment field. The comment field extends from the exclamation point to the end of the line.

The rules for TAB formatting can be summarized as

Fortran 77 Language Reference Manual — Chapter 1, Fortran Elements and Concepts — 6

statement labelAB statemen(initial line)
TAB continuation field statemeftontinuation line)
TAB statemen(initial line)

Note that although many terminal and text editors advance the cursor to a predetermined position when a
TAB is entered, this action is not related to how the TAB will be ultimately interpreted by the compiler.
The compiler interprets TABs in the statement field as blanks.

Types of Lines

The four types of Fortran program lines are
e comment

< debugging (an extension to Fortran 77)
e initial

e continuation

Comments

A comment line is used solely for documentation purposes and does not affect program execution. A
comment line can appear anywhere in a program and has one of the following characteristics:

* An uppercas€ or an asterisk*§ in column 1 and any sequence of characters from column 2 through
to the end of the line

* Ablank line

e Text preceded by an exclamation point (!) at any position of the line

Debugging Lines

Specify & in column 1 for debugging purposes; it conditionally compiles source lines in conjunction
with the -d_linesoption described in Chapter 1 of thertran 77 Programmer’s Guid&Vhen the option

is specified at compilation, all lines witHDain column 1 are treated as lines of source code and compiled;
when the option is omitted, all lines witlDan column 1 are treated as comments.

Initial Lines

Initial lines contain the Fortran language statements that make up the source program; these statements
are described in detail in "Program Organization". These fields divide each Fortran line into

+ statement label field
« continuation indicator field
+ statement field

« comment field

Fortran 77 Language Reference Manual — Chapter 1, Fortran Elements and Concepts — 7

The fields in a Fortran line can be entered either on a character—per—column basis or by using the TAB
character to delineate the fields, as described in the previous section.

Continuation Lines
A continuation line continues a Fortran statement and is identified as follows:
e Columns 1 through 5 must be blank.
e Column 6 contains any Fortran character other than a blank or the digit 0. Column 6 is frequently
used to number the continuation lines.
As with initial lines, columns 7 through the end of the line contain the Fortran statement or a continuation
of the statement.

Alternatively, you can use an ampersafg ih column 1 to identify a continuation line. Usinggaim
column 1 implies that columns 2 through the end of the line are part of the statement. In Fortran 77, any
remaining columns (column 73 and on) of a continuation line are not interpreted.

The maximum number of consecutive continuation lines is 99 unless you change this limit Wit the
compiler option.

Statements

Fortran statements are used to form program units. All Fortran statements, except assignment and
statement functions, begin with a keyworckéywords a sequence of characters that identifies the type
of Fortran statement.

A statement cannot begin on a line that contains any portion of a previous statement, except as part of a
logicallF statement.

The END statement signals the physical end of a Fortran program unit and begins in column 7 or any later
column of an initial line.

Statement Labels

A statement label allows you to refer to individual Fortran statements. A statement label consists of one to
five digitd] one of which must be nonzé&f@laced anywhere in columns 1 through 5 of an initial line.
Blanks and leading zeros are not significant in distinguishing between statement labels.

The following statement labels are equivalent:
"123" "123 " "123" "00123"
Each statement label must be unique within a program unit.

Fortran statements do not require labels. However, only labeled statements can be referenced by other
Fortran statements. Do not lafROGRAM, SUBROUTINE, FUNCTION, BLOCK DATA , or
INCLUDE statements.

Fortran 77 Language Reference Manual — Chapter 1, Fortran Elements and Concepts — 8

Executable Statements

An executable statement specifies an identifiable action and is part of the execution sequence, (described
in "Program Organization") in an executable program.

The three classes of executable statements are
¢ assignment statements
- arithmetic
- logical
— statement labeASSIGN)
— character assignment
» control statements
— unconditional, assigned, and compu&d TO
— arithmeticlF and logicalF
— blockIF, ELSE IF, ELSE, andEND IF
— CONTINUE
- STOPandPAUSE
- DO
- CALL andRETURN
- END
* |/O statements
- READ, WRITE, andPRINT
- REWIND, BACKSPACE, ENDFILE , OPEN, CLOSE, andINQUIRE

- ACCEPT, TYPE, ENCODE, DECODE, DEFINE FILE , FIND, REWRITE DELETE , and
UNLOCK

Non—-executable Statements

A non-executable statement is not part of the execution sequence. You can specify a statement label on
most types of non—executable statements, but you cannot also specify that label for an executable
statement in the same program unit.

A non-executable statement can perform one of these functions:
« Specify the characteristics, storage arrangement, and initial values of data
« Define statement functions
« Specify entry points within subprograms

» Contain editing or formatting information

Fortran 77 Language Reference Manual — Chapter 1, Fortran Elements and Concepts — 9

Classify program units

Specify inclusion of additional statements from another source

The following data type statements are classified as non—-executable:

CHARACTER
COMPLEX
DIMENSION
DOUBLE PRECISION
INTEGER

LOGICAL

REAL

BYTE

Additional non—-executable program statements are

BLOCK DATA INCLUDE
COMMON INTRINSIC

DATA PARAMETER
ENTRY POINTER
EQUIVALENCE PROGRAM
EXTERNAL SAVE

FORMAT SUBROUTINE
FUNCTION Statement function
IMPLICIT VIRTUAL

Program Units

Fortran programs consist of one or more program units. A program unit consists of a sequence of
statements and optional comment lines. It can be a main program or a subprogram. The program unit

defines the scope for symbolic names and statement labels.

The END statement must always be the last statement of a program unit.

Main Program

The main program is the program unit that initially receives control on execution. It can have a
PROGRAM statement as its first statement and contain any Fortran statement eXdB@EHON ,
SUBROUTINE, BLOCK DATA , ENTRY, orRETURN statement. SAVE statement in a main
program does not affect the status of variables or arrag3.@P or END statement in a main program

terminates execution of the program.

Fortran 77 Language Reference Manual — Chapter 1, Fortran Elements and Concepts — 10

The main program does not need to be a Fortran program. RefelFartitzen 77 Programmer’s Guide
for information on writing Fortran programs that interact with programs written in other languages.

The main program cannot be referenced from a subprogram or from itself.

Subprograms

A subprogram is an independent section of code designed for a specialized purpose. It receives control
when referenced or called by a statement in the main program or another subprogram.

A subprogram can be a

« function subprogram identified byFJNCTION statement

e subroutine subprogram identified by BROUTINE statement

* block data subprogram identified bBaOCK DATA statement

* non-Fortran subprogram

Subroutines, external functions, statement functions, and intrinsic functions are collectively called
procedures. Adrocedureis a program unit that performs an operational function.

An external procedure is a function or subroutine subprogram that is processed independently of the
calling or referencing program unit. It can be written as a non—Fortran subprogram as described in the
Fortran 77 Programmer’s Guide

Intrinsic functions are supplied by the processor and are generated as in—line functions or library
functions. Refer to Appendix A, "Intrinsic Functions," for a description of the functions, the results given
by each, and their operational conventions and restrictions.

Program Organization

This section explains the requirements for an executable Fortran program. It also describes the rules for
ordering statements and the statement execution sequence.

Executable Programs

An executable program consists of exactly one main program and zero or more of each of the following
entities

« function subprogram

» subroutine subprogram

« block data subprogram

* non-Fortran external procedure

The main program must not containEBNTRY or aRETURN statement. On encounteriniRETURN
statement, the compiler issues a warning message; at executionREEJRN statement stops the

program. Execution of a program normally ends wh8m@P statement is executed in any program unit
or when arEND statement is executed in the main program.

Fortran 77 Language Reference Manual — Chapter 1, Fortran Elements and Concepts — 11

Order of Statements
The following rules determine the order of statements in a main program or subprogram:

* In the main program,RROGRAM statement is optional; if used, it must be the first statement. In
other program units, AUNCTION, SUBROUTINE, orBLOCK DATA statement must be the first
statement.

« Comment lines can be interspersed with any statement and can pré¢RO&RAM, FUNCTION
, SUBROUTINE, orBLOCK DATA statement.

« FORMAT andENTRY statements can be placed anywhere within a program unit after a
PROGRAM, FUNCTION, SUBROUTINE, orBLOCK DATA statement.

* ENTRY statements can appear anywhere in a program unit except
— between a block statement and its correspondiD IF statement

- within the range of ®0 loop that is, betweenO statement and the terminal statement of the
DO loop

e The Fortran 77 standard requires that specification statements, includifiPtH€IT statement,
be placed before dDATA statements, statement function statements, and executable statements.

However, this implementation of Fortran permits the interspersiDg\dfA statements among
specification statements.

Specification statements specifying the type of symbolic name of a constant must appear before the
PARAMETER statement that identifies the symbolic name with that constant.

e The Fortran 77 standard alloRARAMETER statements to intersperse WithPLICIT
statements or any other specification statements, PARRAMETER statement must precede a
DATA statement.

This implementation extends the Fortran 77 standard to allow interspB&sirdy statements
amongPARAMETER statements.

PARAMETER statements that associate a symbolic name with a constant must precede all other
statements containing that symbolic name.

« All statement function statements must precede the first executable statement.

« IMPLICIT statements must precede all other specification statements EXGRAMETER
statements.

e The last statement of a program unit must bEND statement.

Note: The above rules apply to the program statements after lines addetNylAlIDE statements are
mergedINCLUDE statements can appear anywhere in a program unit.

Execution Sequence

Fortran 77 Language Reference Manual — Chapter 1, Fortran Elements and Concepts — 12

The execution sequence in a Fortran program is the order in which statements are executed. Fortran
statements are normally executed in the order they appear in a program unit. In general, the execution
sequence is as follows:

1. Execution begins with the first executable statement in a main program and continues from there.

2. When an external procedure is referenced in a main program or in an external procedure, execution
of the calling or referencing statement is suspended. Execution continues with the first executable
statement in the called procedure immediately following the correspoRUINGCTION,

SUBROUTINE, orENTRY statement.

3. Execution is returned to the calling statement by an explicit or implicit return statement.

4. Normal execution proceeds from where it was suspended or from an alternate point in the calling
program.

5. The executable program is normally terminated when the processor exegl@B statement in
any program unit or aBND statement in the main program. Execution is also automatically
terminated when an operational condition prevents further processing of the program.

The normal execution sequence can be altered by a Fortran statement that causes the normal sequence to
be discontinued or causes execution to resume at a different position in the program unit. Statements that
cause a transfer of control are

« GOTO

» arithmeticlF

* RETURN

+ STOP

« an /O statement containing an error specifier or end—of-file specifier
e CALL with an alternate return specifier

* alogicallF containing any of the above forms

* blocklF andELSE IF

« the last statement, if any, of Hn block orELSE IF block
« DO

« terminal statement of @O loop

« END

Chapter 2
Constants and Data Structures

This chapter contains the following subsections:
* "Constants"
e "Character Substrings"
* "Records"
e "Arrays"

This chapter discusses the various types of Fortran constants and provides examples of each. It also
explains a few of the ways data can be structured, including character substrings, records, and arrays.

Constants
A constanis a data value that cannot change during the execution of a program. It can be of the following
types:
» arithmetic
* logical
» character
* Hollerith
o hit
The form in which a constant is written specifies both its value and its data type. A symbolic name can be

assigned for a constant using B SRAMETER statement. Blank characters occurring within a constant
are ignored by the processor unless the blanks are part of a character constant.

The sections that follow describe the various types of constants in detail.

Arithmetic Constants
The Fortran compiler supports the following types of arithmetic constants:
e integer
e real
e double—precision
* complex
An arithmetic constant can be signed or unsigned. A signed constant has a leading plus or minus sign to

denote a positive or negative number. A constant that can be either signed or unsigned is called an
optionally signed constant. Only arithmetic constants can be optionally signed.

Note: The value zero is neither positive nor negative; a signed zero has the same value as an unsigned

Fortran 77 Language Reference Manual — Chapter 2, Constants and Data Structures — 1

zZero.

Integer Constants

An integer constant is a whole number with no decimal points; it can have a positive, negative, or zero
value. Hexadecimal and octal integer constants are extensions to the standard integer constant.

Format for Integer Constants

The format for an integer constant is

sww
where

S is the sign of the number: - for negative, + (optional) for positive.
ww is a whole number.

In Fortran, integer constants must comply with the following rules:
« It must be a whole number, that is, without a fractional part.

« If negative, the special character minus (-) must be the leading character. The plus sign (+) in front of
positive integers is optional.

¢ |t must not contain embedded commas.

Examples of valid integer constants are

0+0 +176 -1352 06310 35

Examples of invalid integer constants are

2.03 Decimal point not allowed. This israal constan{described later in this chapter).

7,909 Embedded commas not allowed.

Hexadecimal Integer Constants

Use hexadecimal integer constants for a base 16 radix. Specify a dollar sign ($) as the first character,
followed by any digit (0 through 9) or the letters A through F (either uppercase or lowercase). The
following are valid examples of hexadecimal integer constants:

$0123456789
$ABCDEF
$A2B2C3D4

You can use hexadecimal integer constants wherever integer constants are allowed. Note that in
mixed—-mode expressions, the compiler converts these constants from type integer to the dominant type of
expression in which they appear.

Octal Integer Constants

Fortran 77 Language Reference Manual — Chapter 2, Constants and Data Structures — 2

Use octal integer constants for a base 8 radix. The type of an octal integer con¢T&#BER | in
contrast to the octal constant described in "Bit Constants". This constant is supported to provide
compatibility with PDP-11 Fortran.

The format of an octal constant is as follows:
o"string"

wherestringis one or more digits in the range of O through 7.

Real Constants

A real constant is a number containing a decimal point, exponent, or both; it can have a positive, negative,
or zero value.

A real constant can have the following forms:

sww.ff Basic real constant

sww.fEsee Basic real constant followed by a real exponent

swwEsee Integer constant followed by a real exponent

where

S is the sign of the number: - for negative, + (optional) for positive.
ww is a string of digits denoting the whole number part, if any.

is a decimal point.
ff is a string of digits denoting the fractional part, if any.
Esee denotes a real exponent, wheesis an optionally signed integer.

A basic real constant is written as an optional sign followed by a string of decimal digits containing an
optional decimal point. There must be at least one digit.

A real exponent is a power of ten.

The value of a real constant is either the basic real constant or, for thefosnfiSseeandswwEsee the
product of the basic real constant or integer constant and the power of ten indicated by the exponent
following the

letterE.

All three forms can contain more digits than the precision used by the processor to approximate the value
of the real constant. See thertran 77 Programmer’s Guid®r information on the magnitude and
precision of a real number.

Table 2—-1llustrates real constants written in common and scientific notation with their corresgénding
format.

Table 2-1 Notation Forms for Real Constants

Common Notation Scientific Notation Real Exponent Form

5.0 0.5*10 .5E1 or 0.5E1

Fortran 77 Language Reference Manual — Chapter 2, Constants and Data Structures — 3

364.5 3.465*102 .3645E3

49,300 4.93*104 493E5
-27,100 -2.71*104 -.271E5
-.0018 -1.8*10-3 -.18E-2

The following real constants are equivalent:
5E4 5.E4 .5E5 5.0E+4 +5E04 50000.

Table 2-2sts examples of invalid real constants and the reasons they are invalid.

Table 2-2Invalid Real Constants

Invalid Constant Reason Invalid

-18.3E No exponent following the E

E-5 Exponent part alone

6.01E2.5 Exponent part must be an integer

3.5E4E2 Only one exponent part allowed per
constant

19,850 Embedded commas not allowed

Double—Precision Constants

A double—precision constant is similar to a real constant except that it can retain more digits of the
precision than a real constant. (The size and value ranges of double—precision constants are given in the
Fortran 77 Programmer’s Guide

A double—precision constant assumes a positive, negative, or zero value in one of the following forms:

swwbDsee An integer constant followed by a double—precision exponent

sww.fDsee A basic real constant followed by a double—precision exponent

where

S is an optional sign.

ww is a string of digits denoting the whole number part, if any.

ff is a string of digits denoting the fractional part, if any.

Dsee denotes a double—precision exponent wéesie an optionally signed exponent.

The value of a double—precision constant is the product of the basic real constant part or integer constant
part and the power of ten indicated by the integer following the Rfitethe exponent part. Both forms

can contain more digits than those used by the processor to approximate the value of the real constant.
Refer to thd=ortran 77 Programmer’s Guid®r information on the magnitude and precision of a
double—precision constant.

Valid forms of double—precision constants are

1.23456D3
8.9743D0

Fortran 77 Language Reference Manual — Chapter 2, Constants and Data Structures — 4

-4.D-10
16.8D-6

For example, the following forms of the numeric value 500 are equivalent:
5D2 +5D02 5.D2 5.D+02 5D0002

Table 2—-8sts examples of invalid double—precision constants and the reasons they are invalid.

Table 2-3Invalid Double—Precision Constants

Invalid Constant Reason Invalid

2.395D No exponent following the D
-9.8736 Missing D exponent designator
1,010,203D0 Embedded commas not allowed

Complex Constants

A complex constant is a processor approximation of the value of a complex number. It is represented as

an ordered pair of real data values. The first value represents the real part of the complex number, and the
second represents the imaginary part. Each part has the same precision and range of allowed values as real
data.

A complex constant has the form,(n wherem andn each have the form ofraal constantrepresenting
the complex valum + ni, wherd is the square root of -The formmdenotes the real partdenotes the
imaginary part. Botlmandn can be positive, negative, or zero. Refer to Tabldéd2-ekamples of valid
forms of complex data.

Table 2—-4Valid Forms of Complex Data

Valid Complex Constant Equivalent Mathematical Expression
(3.5, -5) 3.5-5i

©,-1) y

(0.0, 12) 0+ 12ior 12i

(2E3, 0) 2000 + 0i or 2000

Table 2-%rovides examples of invalid constants and lists the reasons they are invalid.

Table 2-5Invalid Forms of Complex Data

Invalid Constant Reason Invalid

1,) No imaginary part

(1, 2.2,3) More than two parts

(10, 52.D5) Double-precision constants not allowed for either part
(1.15, 4E) Imaginary part has invalid form

Logical Constants

Logical constants represent only the values true or false, represented by one of the forms inTable 2-6

Table 2-6 Logical Constant Values

Form Value

Fortran 77 Language Reference Manual — Chapter 2, Constants and Data Structures — 5

.TRUE. True
.FALSE. False

Character Constants

A character constant is a string of one or more characters that can be represented by the processor. Each
character in the string is numbered consecutively from left to right beginning with 1.

Note: The quotation mark (") is an extension to Fortran 77.

If the delimiter is ", then a quotation mark within the character string is represented by two consecutive
quotation marks with no intervening blanks.

If the delimiter is ’, then an apostrophe within the character string is represented by two consecutive
apostrophes with no intervening blanks.

Blanks within the string of characters are significant.

The length of a character constant is the number of characters, including blanks, between the delimiters.
The delimiters are not counted, and each pair of apostrophes or quotation marks between the delimiters
counts as a single character.

A character constant is normally associated wittdHARACTER data type. The Fortran 77 standard

is extended (except as noted below) to allow character constants to appear in the same context as a
numeric constant. A character constant in the context of a numeric constant is treated the same as a
Hollerith constant.

Note: Character constants cannot be used as actual arguments to numeric typed dummy arguments.

Table 2—-provides examples of valid character constants and shows how they are stored.

Table 2-7 Valid Character Constants

Constant Stored as
'DON"'T’ DON'T
"I'M HERE!" I'M HERE!
'STRING’ STRING
'LMN™OP’ LMN™OP

Table 2-8sts examples of invalid character constants and the reasons they are invalid.

Table 2-8Invalid Character Constants

Invalid Constant Reason Invalid

ISN.T Terminating delimiter missing
.YES’ Mismatched delimiters
CENTS Not enclosed in delimiters

Zero length not allowed
Zero length not allowed

Hollerith Constants

Fortran 77 Language Reference Manual — Chapter 2, Constants and Data Structures - 6

Use Hollerith constants to manipulate packed character strings in the context of integer data types. A
Hollerith constant consists of a character count followed by the tether uppercase or lowercase)
and a string of characters as specified in the character count and has the following format:

NHXXX...X

wheren is a nonzero, unsigned integer constant and whepésthepresent a string of exactly
contiguous characters. The blank character is significant in a Hollerith constant.

Examples of valid Hollerith constants are

3HA

10H'VALUE ="

8H MANUAL

Table 2-9rovides some examples of invalid Hollerith constants and the reasons they are invalid.

Table 2-9Invalid Hollerith Constants

Invalid Constant Reason Invalid

2HYZ Blanks are significant; should be 3H YZ
-4HBEST Negative length not allowed

OH Zero length not allowed

The following rules apply to Hollerith constants:

Hollerith constants are stored as byte strings; each byte is the ASCII representation of one character.

* Hollerith constants have no type; they assume a numeric data type and size depending on the context
in which they are used.

* When used with a a binary operator, octal and hexadecimal constants assume the data type of the
other operand. For example,

INTEGER*2 HILO
HILO ="FF'X

* The constant is assumed to be of tlWWEEGER*2 and two bytes long.

< In other cases, when used in statements that require a specific data type, the constant is assumed to be
the required type and length.

* Alength of four bytes is assumed for hexadecimal and octal constants used as arguments; no data
type is assumed.

« In other cases, the constant is assumed to be of\y[EEGER*4 .

* When a Hollerith constant is used in an actual parameter list of a subprogram reference, the formal
parameter declaration within that subprogram must specify a numeric type, not a character type.

« Avariable can be defined with a Hollerith value throudd®d A statement, an assignment
statement, or READ statement.

e The number of charactens) (n the Hollerith constant must be less than or equglttte maximum

Fortran 77 Language Reference Manual — Chapter 2, Constants and Data Structures — 7

number of characters that can be stored in a variable of the given type gvidhre size of the
variable expressed in bytesnlk g, the Hollerith constant is stored and extended on the rightgwith (
-n) blank characters. (Refer to thertran 77 Programmer’s Guidr the sizes of arithmetic and
logical data types.)

Bit Constants

You can use bit constants anywhere numeric constants are allowed. Taldb®v4 €he allowable bit
constants and their format.

Table 2-10Valid Substring Examples

Format Meaning Valid substring Maximum
Characters

b’ string or 'string’b? Binary 0,1 64

O’ string’ or 'string'oa Octal 0-7 22

X' string’ or 'string’xa Hexadecimal 0-9;a-f 16

Z' string or 'string'za Hexadecimal 0-9;a-f 16

b, 0, X, and z can be lower—- or uppercase (B, O, X, Z)
The following are examples of bit constants used@A statement.

integer a(4)
data a/b’1010",0'12",z’a’, x’b’/

The above statement initializes the first elements of a four—element array to binary, the second element to
an octal value, and the last two elements to hexadecimal values.

The following rules apply to bit constants:

« Bit constants have no type; they assume a numeric data type and size depending on the context in
which they are used.

* When used with a binary operator, octal and hexadecimal constants assume the data type of the other
operand. For example,

INTEGER*2 HILO
HILO ="FF'X

The constant is assumed to be ofMiIEEGER*2 type and two bytes long.

< In other cases, when used in statements that require a specific data type, the constant is assumed to be
the required type and length.

* Alength of four bytes is assumed for hexadecimal and octal constants used as arguments; no data
type is assumed.

< In other cases, the constant is assumed to be iTHEGER*4 data type.
* A hexadecimal or octal constant can specify up to 16 bytes of data.

e Constants are padded with zeros to the left when the assumed length of the constant is more than the
digits specified by the constant. Constants are truncated to the left when the assumed length is less

Fortran 77 Language Reference Manual — Chapter 2, Constants and Data Structures — 8

than that of the digits specified.

Character Substrings

A character substring is a contiguous sequencbarfacterghat is part of a character data item. A
character substring cannot be empty; that is, it must contain at least one byte of storage. Each character is
individually defined or undefined at any given time during the execution of a program.

Substring Names

A substring name defines the corresponding substring and allows it to be referenced in a character
expression. A substring name has one of the following forms:

V([el:[ed)

a(dg...) ([el:[e2)

where

% is a character variable name

a is a character array name.

elande2 are integer expressions, called substring expressions.You can specify a non-integer
character foelande?2 If specified, each non-integer character is converted to an
integer before use; fractional portions remaining after conversion are truncated.

S is a subscript expression.

The valuee1specifies the left most character position of the substring relative to the beginning of the
variable or array element from which it was abstracted, weRile the right most position. Positions are
numbered left to right beginning with 1. For example, the following denotes characters in positions three
through five of the character variali:

EX(3:5)

The following specifies characters in positions one through five of the character array element
NAME(2,4):

NAME(2,4)(1:5)

A character substring has the lengfty e1+ 1.

Substring Values el, e2
The value of the numeric expressi@isande2in a substring name must fall within the range
1 \xb2 el\xb2 e2\xb2 len

wherelenis the length of the character variable or array element. A value of one is impliés if
omitted. A value ofenis taken ife2is omitted. When bothlande2are not specified, the fora:) is
equivalent tovand the forna(s[,§..)(;) is equivalent ta(s[.g..).

Fortran 77 Language Reference Manual — Chapter 2, Constants and Data Structures — 9

The specification foelande2can be any numeric integer expression, including array element references
and function references. Consider the character variable

XCHAR ="QRSTUVWXYZ’

Table 2-11ists examples of valid substrings taken from this variable.

Table 2-11Valid Substring Examples

Expression Substring Value Substring Length
EX1 = XCHAR (3:8) STUVWX 6
EX2 = XCHAR (:8) QRSTUVWX 8
EX3 = XCHAR (5:) UVWXYZ 6

Other examples are

BQ(10)(2:1X) Specifies characters in positions 2 through int€§esf character arragQ(10). The
value ofiX must be \xb3 2 and \xb2 the length of an elemeBtHf

BLT(:) Equivalent to the variabBLT .

Records

The record—handling extension enables you to declare and operate on multifield records in Fortran
programs. Avoid confusing the terecordas it is used here with the teretordthat describes input and
output data records.

Overview of Records and Structures

A recordis a composite or aggregate entity containing one or more record elements or fields. Each

element of a record is usually named. References to a record element consist of the name of the record and
the name of the desired element. Records allow you to organize heterogeneous data elements within one
structure and to operate on them either individually or collectively. Because they can be composed of
heterogeneous data elements, records are not typed like arrays are.

Define the form of a record with a group of statements calidiature definitionblockEstablish a
structure declaration in memory by specifying the name of the structuREE@RD statement. A
structure declaration block can include one or more of the following items:

« Typed data declarations (variables or arrays)
e Substructure declarations
e Mapped field declarations
e Unnamed fields
The following sections describe these items. Refer tREEEORD andSTRUCTURE declarations

block sections in Chapter 4, "Specification Statements," for details on specifying a structure in a source
program.

Typed Data Declarations (Variables or Arrays)

Fortran 77 Language Reference Manual — Chapter 2, Constants and Data Structures — 10

Typed data declarations in structure declarations have the form of normal Fortran typed data declarations.
You can freely intermix different types of data items within a structure declaration.

Substructure Declarations

Establish substructures within a structure by using either a nested structure declar&EGOR®
statement.

Mapped Field Declarations

Mapped field declarations are made up of one or more typed data declarations, substructure declarations
(structure declarations amRECORD statements), or other mapped field declarations. A block of
statements, called a union declaration, defines mapped field declarations. Unlike typed data declarations,
all mapped field declarations that are made within a single union declaration share a common location
within the containing structure.

Unnamed Fields

Declare unnamed fields in a structure by specifying the pseudo%faliie in place of an actual field
name.%FILL generates empty space in a record for purposes such as alignment.

Record and Field References

The generic termacalar referenceefers to all references that resolve to single typed data items. A scalar
field reference of an aggregate falls into this category. The generiaggnegate referends used to
refer to all references that resolve to references of structured data items defiREYRD statement.

Scalar field references can appear wherever normal variables or array elements can appear, with the
exception oCOMMON, SAVE, NAMELIST , andEQUIVALENCE statements. Aggregate references

can only appear in aggregate assignment statements, in unformatted 1/O statements, and as parameters to
subprograms.

Aggregate Assignment Statement

Aggregates can be assigned as whole entities. This special form of the assignment statement is indicated
by an aggregate reference on the left—hand side of an assignment statement and requires an identical
aggregate to appear on the right—hand side of the assignment.

Arrays

An array is a non—empty sequence of data of the same type occupying consecutive bytes in storage. A
member of this sequence of data is referred to as an array element.

Each array has the following characteristics:
* array name

e datatype

Fortran 77 Language Reference Manual — Chapter 2, Constants and Data Structures — 11

e array elements
« array declarator specifying:
- number of dimensions
- size and bounds of each dimension
Define an array usingIMENSION, COMMON, or type statement (described in Chapter 4,
"Specification Statements"); it can have a maximum of seven dimensions.

Note: For information on array handling when interacting with programs written in another language,
see thé-ortran 77 Programmer’s Guide

Array Names and Types

An array name is the symbolic name given to the array and must conform to the rules given inChapter 1,
"Fortran Elements and Concepts,"” for symbolic names. When referencing the array as a whole, specify
only the array name. An array name is local to a program unit.

An array element is specified by the array name and a subscript. The form of an array element name is

a@s[g...)

where

a is an array name.

(s[9--) is a subscript.

S is a subscript expression.

For exampleDATE(1,5) accesses the element in the first row, fifth column, oDXREE array.

The number of subscript expressions must be equal to the number of dimensions in the array declarator
for the array name.

An array element can be any of the valid Fortran data types. All array elements must be the same data
type. Specify the data type explicitly using a type statement or implicitly using the first character of the
array name. Refer to Chapter 1, "Fortran Elements and Concepts," for details about data types.

Reference a different array element by changing the subscript value of the array element name.

Array Declarators

An array declarator specifies a symbolic name for the array, the number of dimensions in the array, and
the size and bounds of each dimension. Only one array declarator for an array name is allowed in a
program unit. The array declarator can appeaDIMENSION statement, a type statement, or a
COMMON statement but not in more than one of these.

An array declarator has the form
adl[d...)

where

Fortran 77 Language Reference Manual — Chapter 2, Constants and Data Structures — 12

a is a symbolic name of the array.

d is a dimension declarator of the following form:

[d1]d2

where:

di is a lower—dimension bound that must be a numeric expression.

d2 is an upper—dimension bound that must be a numeric expression or an asterisk (*).

Specify an asterisk onlyd2 is part of the last dimension declarator (see below).
If d1 ord2is not of type integer, it is converted to integer values; any fractional part is truncated.

An array declarator can have a dummy argument as an array name and, therefore, be a dummy array
declarator. An array declarator can be one of three types: a constant array declarator, an adjustable array
declarator, or an assumed-size array declarator.

Each of the dimension bounds inanstant array declaratos a numeric constant expression. An
adjustable array declaratas a dummy array declarator that contains one or more dimension bounds that
are integer expressions but not constant integer expressioasséimed-size array declarai®a

dummy array declarator that has integer expressions for all dimension bounds, except that the upper
dimension boundj2, of the last dimension is an asterisk (*).

A dimension—-bound expression cannot contain a function or array element name reference.

Value of Dimension Bounds

The lower—dimension bourttl, and the upper—dimension bouth?,can have positive, negative, or zero
values. The value of the upper—dimension bal@dnust be greater than or equal to that of the
lower—dimension boundl.

If a lower—dimension bound is not specified, its value is assumed to be one (1). The upper—dimension
bound of an asterisk (*) is always greater than or equal to the lower dimension bound.

The size of a dimension that does not have an asterisk (*) as its upper bound has tti# vd®e 1.

The size of a dimension that has an asterisk (*) as its upper bound is not specified.

Array Size

The size of an array is exactly equal to the number of elements contained by the array. Therefore, the size
of an array equals the product of the dimensions of the array. For constant and adjustable arrays, the size
is straightforward. For assumed-size dummy arrays, however, the size depends on the actual argument
corresponding to the dummy array. There are three cases:

« If the actual argument is a non—character array name, the size of the assumed-size array equals the
size of the actual argument array.

< If the actual argument is a non—character array element name with a subscripf wrakme afray of
sizex, the size of the assumed-size array equals 1.

Fortran 77 Language Reference Manual — Chapter 2, Constants and Data Structures — 13

< If the actual argument is either a character array name, a character array element name, or a character
array element substring name, the array begins at character storagé amiarray containing a
total ofccharacter storage units; the size of the assumed-size array equals:
INT((c-t+ 1)in)

whereln is the length of an element of the dummy array.

Note: Given an assumed-size dummy array widlmensions, the product of the sizes of theffirst
dimensions must not be greater than the size of the array (the size of the array is determined as described
above).

Storage and Element Ordering

Storage for an array is allocated in the program unit in which it is declared, except in subprograms where
the array name is specified as a dummy argument. The former declaration is called an actual array
declaration. The declaration of an array in a subprogram where the array name is a dummy argument is
called adummy array declaratian

The elements of an array are ordered in sequence and stored in column order. This means that the left
most subscript varies first, as compared to row order, in which the right most subscript varies first. The
first element of the array hasabscript valu@f one; the second element hasibscript valuef two;

and so on. The last element hasibscript valuequal to the size of the array.

Consider the following statement that declares an array witi EEBGER type statement:
INTEGER t(2,3)

Figure 2—-%hows the ordering of elements of this array.

toray iz tiz]tz ti,3|tizs

Figure 2—1 Order of Array Elements

Subscripts

Thesubscriptdescribes the position of the element in an array and allows that array element to be defined
or referenced. The form of a subscript is

(sLd.-)

wheresis asubscript expressioif he termsubscriptincludes the parentheses that delimit the list of
subscript expressions.

A subscript expressiamust be a numeric expression and can contain array element references and
function references. However, it cannot contain any function references that affect other subscript
expressions in the same subscript.

A non-integer character can be specified for subscript expression. If specified, the non—integer character is

Fortran 77 Language Reference Manual — Chapter 2, Constants and Data Structures — 14

converted to an integer before use; fractional portions remaining after conversion are truncated.

If a subscript expression is not of type integer, it is converted to integer values; any fractional part is
truncated.

Because an array is stored as a sequence in memory, the values of the subscript expressions must be
combined into a single value that is used as the offset into the sequence in memory. That single value is
called thesubscript value

The subscript value determines which element of the array is accessed. The subscript value is calculated
from the values of all the subscript expressions and the declared dimensions of the array (seeJable 2-12

Table 2-12 Determining Subscript Values

n Dimension Subscript Subscript Value
Declarator
1 (1:k1) (s1) 1+(sl-j1)
2 (1:k1, j2:k2) (s1, s2) 1+(sl-jl)+(s2-j2)*d1
3 (1:k1, j2:k2, j3:k3) (s1, s2, s3) 1+ (sl-j1) + (s2-j2) * d1 + (s3-j3) *d2 * d1
n (1:k1,jn:kn) (s1, ...sn) 1+(sl-j1)+(s2-j2)*d1 + (s3-j3)*d1*d2 +

... + (sn-jn) * dn-1*dn-2*d1

The subscript value and the subscript expression value are not necessarily the same, even for a
one—dimensional array. For example,

DIMENSION X(10,10),Y(-1:8)
Y(2) = X(1,2)

Y (2) identifies the fourth element of arrdythe subscript i€) with a subscript value of four, and the
subscript expression Bwith a value of twoX(1,2) identifies the eleventh elementXfthe subscript is
(1,2) with a subscript value of eleven, and the subscript expressiohsad? with the values of one and
two, respectively.

Chapter 3
Expressions

This chapter contains the following subsections:
e "Arithmetic Expressions”
e "Character Expressions"
* "Relational Expressions”
e "Logical Expressions"
« "Evaluating Expressions in General"
An expression performs a specified type of computation. It is composed of a sequence of operands,
operators, and parentheses. The types of Fortran expressions are
e arithmetic
* character
* relational
* logical

This chapter describes formation, interpretation, and evaluation rules for each type of expression. This
chapter also discusses mixed—mode expressions, which are Fortran 77 enhancements of Fortran 66.

Arithmetic Expressions

An arithmetic expression specifies a numeric computation that yields a numeric value on evaluation. The
simplest form of an arithmetic expression can be:

e an unsigned arithmetic constant

e asymbolic name of an arithmetic constant

e an arithmetic variable reference

< an arithmetic array element reference

« an arithmetic function reference

You can form more complicated arithmetic expressions from one or more operands together with
arithmetic operators and parentheses.

An arithmetic element can include logical entities because logical data is treated as integer data when
used in an arithmetic context. When both arithmetic and logical operands exist for a given operator, the
logical operand is promoted to tylTEGER of the same byte length as the original logical length. For
example, @ OGICAL*2 will be promoted tdNTEGER*2 and a.OGICAL*4 will be promoted to
INTEGER*4 .

Fortran 77 Language Reference Manual — Chapter 3, Expressions - 1

Arithmetic Operators

Table 3—-%hows the arithmetic operators.

Table 3—1 Arithmetic Operators

Operator Function

*x Exponentiation

* Multiplication

/ Division

+ Addition or identity

- Subtraction or negation

Use the exponentiation, division, and multiplication operators between exactly two operands. You can use
the addition and subtraction operators with one or two operands; in the latter case, specify the operator
before the operand; for exampl€OTAL .

Do not specify two operators in succession. (Note that the exponentiation operator consists of the two
characters (**), but is aingleoperator.) Implied operators, as in implied multiplication, are not allowed.
Interpretation of Arithmetic Expressions

Table 3—Mterprets sample arithmetic expressions.

Table 3-2Interpretation of Arithmetic Expressions

Operator Use Interpretation
*x X1 ** x2 Exponentiate x1 to the power of x2
* x1*x2 Multiply x1 and x2
/ x1/x2 Divide x1 by x2
+ x1 + x2 Add x1 and x2
+ X X (identity)
- x1- x2 Subtract x1 from x2
-X Negate x

An arithmetic expression containing two or more operators is interpreted based on a precedence relation
among the arithmetic operators. This precedence, from highest to lowest, is

- (0
e *and/
e +and-

Use parentheses to override the order of precedence.
The following is an example of an arithmetic expression:
A/B-C**D

The operators are executed in the following sequence:

Fortran 77 Language Reference Manual — Chapter 3, Expressions — 2

1. C*D is evaluated first.

2. A/Bis evaluated next.

3. The result o€**D is subtracted from the resultAfB to give the final result.

A unary operator (-) can follow another operator. Specifying the unary operator after the exponentiation

operator produces a variation on the standard order of operations. The unary operator is evaluated first in
that case, resulting in exponentiation taking a lower precedence in the expression.

For example, the following expression
A**-B*C
is interpreted as

A*(-B*C)

Arithmetic Operands

Arithmetic operands must specify values with integer, real, double—precision, complex, or
double-complex data types. You can combine specific operands in an arithmetic expression. The
arithmetic operands, in order of increasing complexity, are

e primary
« factor
e term

e arithmetic expression

A primary is the basic component in an arithmetic expression. The forms of a primary are
e an unsigned arithmetic constant
e asymbolic name of an arithmetic constant
* an arithmetic variable reference
* an arithmetic array element reference
* an arithmetic function reference
e an arithmetic expression enclosed in parentheses
A factorconsists of one or more primaries separated by the exponentiation operator. The forms of a factor
are
e primary
e primary ** factor

Factors with more than one exponentiation operator are interpreted from right to left. For example,
JK is interpreted ag*(J**K) , and**J**K**L is interpreted ak*(J**(K**L))

Fortran 77 Language Reference Manual — Chapter 3, Expressions — 3

Thetermincorporates the multiplicative operators into arithmetic expressions. Its forms are

» factor

» term/factor

* term * factor

The above definition indicates that factors are combined from left to right in a term containing two or
more multiplication or division operators.

Finally, at the highest level of the hierarchy, areattidametic expressiond he forms of an arithmetic
expression are

e term
e +term
e -term

e arithmetic expression + term

« arithmetic expression - term
An arithmetic expression consists of one or more terms separated by an addition operator or a subtraction
operator. The terms are combined from left to right. For exampE;Chas the same interpretation as

the expressiofA+B)-C Expressions such A$-BandA+-Bare not allowed. The correct forms are
A*(-B) andA+(—B)

An arithmetic expression can begin with a plus or minus sign.

Arithmetic Constant Expressions

An arithmetic constant expressi@an arithmetic expression containing no variables. Therefore, each
primary in an arithmetic constant expression must be one of the following:

« arithmetic constant

« symbolic name of an arithmetic constant

e arithmetic constant expression enclosed in parentheses

In an arithmetic constant expression, do not specify the exponentiation operator unless the exponent is of

type integer. Variable, array element, and function references are not allowed. Examples of integer
constant expressions are

7
-7

-7+5

3**2

x+3 (where x is the symbolic name of a constant)

Integer Constant Expressions

Fortran 77 Language Reference Manual — Chapter 3, Expressions - 4

An integer constant expressigan arithmetic constant expression containing only integers. It can
contain constants or symbolic names of constants, provided they are of type integer. As with all constant
expressions, no variables, array elements, or function references are allowed.

Evaluating Arithmetic Expressions

The data type of an expression is determined by the data types of the operands and functions that are
referenced. Thus, integer expressions, real expressions, double—precision expressions, complex
expressions, and double expressions have values of type integer, real, double-precision, complex, and
double—-complex, respectively.

Single-Mode Expressions

Single—-mode expressions are arithmetic expressions in which all operands have the same data type. The
data type of the value of a single-mode expression is thus the same as the data type of the operands. When
the addition operator or the subtraction operator is used with a single operand, the data type of the

resulting expression is the same as the data type of the operand.

Mixed—Mode Expressions

Mixed—-mode expressions contain operands with two or more data types. The data type of the result of a
mixed—-mode expression depends on the rank associated with each data type, asTsinbevR-i

Table 3-3Data Type Ranks

Data Type Rank
INTEGER*1 1 (lowest)
INTEGER*2 2
INTEGER*4 3

REAL*4 4

REAL*8 (double precision) 5
COMPLEX*8 6
COMPLEX*16 7 (highest)

Except for exponentiation (discussed below), the result of a mixed—mode expression is assigned the data
type of the highest-ranked element in the expression. The lower-ranked operand is converted to the type
of the higher-ranked operand so that the operation is performed on values with equivalent data types. For
example, an operation on an integer operand and a real operand produces a result of type real.

Operations that combifREAL*8 (DOUBLE PRECISION) andCOMPLEX*8 (COMPLEX) are not
allowed. TheREAL*8 operand must be explicitly converted (for example, by usin@M®L intrinsic
function).

Exponentiation

Exponentiation is an exception to the above rules for mixed—mode expressions. When raising a value to an
integer power, the integer is not converted. The result is assigned the type of the left operand.

Fortran 77 Language Reference Manual — Chapter 3, Expressions — 5

When a complex value is raised to a complex power, the value of the expression is defined as follows:

xy = EXP (y * LOG(x))

Integer Division

One operand of type integer can be divided by another operand of type integer. The result of an integer
division operation is a value of type integer, referred to as an integer quotient. The integer quotient is
obtained as follows:

- If the magnitude of the mathematical quotient is less than one, then the integer quotient is zero. For
example, the value of the expression (18/30) is zero.

< If the magnitude of the mathematical quotient is greater than or equal to one, then the integer
quotient is the largest integer that does not exceed the magnitude of the mathematical quotient and
whose sign is the same as that of the mathematical quotient. For example, the value of the expression
(-9/2) is -4.

Character Expressions

A character expressioyields a character string value on evaluation. The simplest form of a character
expression can be one of these types of characters:

« constant

» variable reference

* array element reference
« substring reference

« function reference

Construct complicated character expressions from one or more operands together with the concatenate
operator and parentheses.

Concatenate Operator

The concatenate operator (/) is the only character operator defined in Fortran. A character expression
formed from the concatenation of two character operghdsadx2is specified as

x1/l x2

The result of this operation is a character string with a valug eftended on the right with the value of
x2. The length of the result is the sum of the lengths of the character operands. For example,

'HEL' // 'LO2’
The result of the above expression is the stiB$LO2 of length six.

Character Operands

A character operananust identify a value of type character and must be a character expression. The

Fortran 77 Language Reference Manual — Chapter 3, Expressions — 6

basic component in a character expression is the chapaotary. The forms of a character primary are
e character constant
< symbolic name of a character constant
» character variable reference
» character array element reference
« character substring reference
» character function reference
» character expression enclosed in parentheses
A character expressioconsists of one or more character primaries separated by the concatenation
operator. Its forms are
» character primary
» character expression // character primary
In a character expression containing two or more concatenation operators, the primaries are combined
from left to right. Thus, the character expression
‘A’ /['BCD’ /| 'EF’
is interpreted the same as
(A’ /l'BCD") /I 'EF
The value of the above character expressiBSDEF.

Except in a character assignment statement, concatenation of an operand with an asterisk (*) as its length
specification is not allowed unless the operand is the symbolic name of a constant.

Character Constant Expressions

A character constargxpression is made up of operands that cannot vary. Each primary in a character
constant expression must be a

» character constant
« symbolic name of a character constant

« character constant expression enclosed in parentheses
A character constant expression cannot contain variable, array element, substring, or function references.

Relational Expressions

A relational expression yields a logical value of eiti@&RUE. or .FALSE. on evaluation and
comparison of two arithmetic expressions or two character expressions. A relational expression can
appear only within a logical expression. Refer to "Logical Expressions” for details about logical

Fortran 77 Language Reference Manual — Chapter 3, Expressions — 7

expressions.

Relational Operators

Table 3—-4ists the Fortran relational operators.

Table 3—-4 Fortran Relational Operators

Relational Operator Meaning

.EQ. Equal to

.NE. Not equal to

.GT. Greater than

.GE. Greater than or equal to
.LT. Less than

.LE. Less than or equal to

Arithmetic and character operators are evalub&ddrerelational operators.

Relational Operands

The operands of a relational operator can be arithmetic or character expressions. The relational
expression requires exactly two operands and is written in the following form:

el relop e2

where

elande2 are arithmetic or character expressions.
relop is the relational operator.

Note: Bothelande2must be the same type of expression, either arithmetic or character.

Evaluating Relational Expressions

The result of a relational expression is of type logical, with a valuBRME. or .FALSE.. The manner
in which the expression is evaluated depends on the data type of the operands.

Arithmetic Relational Expressions

In an arithmetic relational expressied,ande2must each be an integer, real, double precision, complex,
or double complex expressiaelop must be a relational operator.

The following are examples of arithmetic relational expressions:

(a+b) .EQ. (c + 1)
HOURS .LE. 40

You can use complex type operands only when specifying eithgt@her .NE. relational operator.

An arithmetic relational expression has the logical val&JE. only if the values of the operands satisfy
the relation specified by the operator. Otherwise, the valISSE..

Fortran 77 Language Reference Manual — Chapter 3, Expressions — 8

If the two arithmetic expressiomdande2differ in type, the expression is evaluated as follows:

((ed-(e2) relop0

where the value 0 (zero) is of the same type as the expregsleng®) and the type conversion rules
apply to the expression. Do not compare a double precision value with a complex value.

Character Relational Expressions

In a character relational expressiethiande2are character expressions aekbp is a relational operator.
The following is an example of a character relational expression:

NAME .EQ. 'HOMER’

A character relational expression has the logical valR&JE. only if the values of the operands satisfy
the relation specified by the operator. Otherwise, the valltAISSE.. The result of a character
relational expression depends on the collating sequence as follows:

< If elande2are single characters, their relationship in the collating sequence determines the value of
the operatorelis less than or greater thaif elis before or aftee2 respectively, in the collating
sequence.

« If eitherelore2are character strings with lengths greater than 1, corresponding individual
characters are compared from left to right until a relationship otherEamran be determined.

« If the operands are of unequal length, the shorter operand is extended on the right with blanks to the
length of the longer operand for the comparison.

« If no other relationship can be determined after the strings are exhausted, the strings are equal.

The collating sequence depends partially on the processor; however, equaliQestsl.NE. do not
depend on the processor collating sequence and can be used on any processor.

Logical Expressions

A logical expression specifies a logical computation that yields a logical value. The simplest form of a
logical expression is one of the following:

* logical constant

« logical variable reference

» logical array element reference
« logical function reference

» relational expression

Construct complicated logical expressions from one or more logical operands together with logical
operators and parentheses.

Logical Operators

Fortran 77 Language Reference Manual — Chapter 3, Expressions — 9

Table 3-%lefines the Fortran logical operators.

Table 3-5Logical Operators

Logical Operator Meaning

.NOT. Logical negation
.AND. Logical conjunt
.OR. Logical disjunct
.EQV. Logical equivalence
.NEQV. Logical exclusive or
XOR. Same as .NEQV.

All logical operators require at least two operands, except the logical negation apiddtorwhich
requires only one.

A logical expression containing two or more logical operators is evaluated based on a precedence relation
between the logical operators. This precedence, from highest to lowest, is

« .NOT.
 .AND.
« .OR.

« .EQV. and.NEQV.
« XOR.

For example, in the following expression

W .NEQV. X .OR. Y .AND. Z

the operators are executed in the following sequence:

1. Y .AND. Zis evaluated firstX represents the result).
2. X.OR. Ais evaluated secon® ¢epresents the result).

3. W .NEQV. Bis evaluated to produce the final result.

You can use parentheses to override the precedence of the operators.

Logical Operands

Logical operandspecify values with a logical data type. The forms of a logical operands are
* logical primary

« logical factor

* logical term

« logical disjunct

« logical expression

Fortran 77 Language Reference Manual — Chapter 3, Expressions — 10

Logical Primary
The logicalprimary is the basic component of a logical expression. The forms of a logical primary are

* logical constant

« symbolic name of a logical constant

* integer or logical variable reference

» logical array element reference

* integer or logical function reference

« relational expression

* integer or logical expression in parentheses
When an integer appears as an operand to a logical operator, the other operand is promoted to type integer
if necessary and the operation is performed on a bit—by-bit basis producing an integer result. Whenever an

arithmetic datum appears in a logical expression, the result of that expression will be of type integer
because of type promotion rules. If necessary, the result can be converted2GkGAL .

Do not specify two logical operators consecutively and do not use implied logical operators.

Logical Factor

Thelogical factoruses the logical negation operafdOT. to reverse the logical value to which it is
applied. For example, applyinjOT. to a false relational expression makes the expression true.
Therefore, ifUP is true,.NOT. UP s false. The logical factor has the following forms:

« logical primary

* .NOT. logical primary

Logical Term

Thelogical termuses the logical conjunct operatdND. to combine logical factors. It takes the forms
* Logical factor

» Logical term AND. logical factor

In evaluating a logical term with two or ma®eND. operators, the logical factors are combined from left
to right. For exampleX .AND. Y .AND. Z has the same interpretation(XsAND. Y) .AND. Z.

Logical Disjunct

Thelogical disjunctis a sequence of logical terms separated byQRe operator and has the following
two forms:

* Logical term

Fortran 77 Language Reference Manual — Chapter 3, Expressions — 11

» Logical disjunctOR. logical term

In an expression containing two or md@R. operators, the logical terms are combined from left to right
in succession. For example, the expres¥io®R. Y .OR. Zhas the same interpretation(sOR. Y)
.OR. Z.

Logical Expression

At the highest level of complexity is thamgical expressionA logical expression is a sequence of logical
disjuncts separated by tHeQV., .NEQV., or.XOR. operators. Its forms are

« logical disjunct

» logical expressiorEQV. logical disjunct

» logical expressioNEQV. logical disjunct

» logical expressiorXOR. logical disjunct

The logical disjuncts are combined from left to right when a logical expression contains two or more
.EQV., .NEVQ., or.XOR. operators.

A logical constant expression is a logical expression in which each primary is a logical constant, the
symbolic name of a logical constant, a relational expression in which each primary is a constant, or a
logical constant expression enclosed in parentheses. A logical constant expression can contain arithmetic
and character constant expressions but not variables, array elements, or function references.

Interpretation of Logical Expressions

In general, logical expressions containing two or more logical operators are executed according to the
hierarchy of operators described previously, unless the order has been overridden by the use of
parentheses. Table 3d&fines the form and interpretation of the logical expressions.

Table 3—6 Logical Expressions

IFA= B= THEN A.AND.B A.OR.B A.EQV.B A.XOR.B
.NOT.B A.NEQV.B

F F T F F T F

F T F F T F T

T F - F T F T

T T - T T T F

Evaluating Expressions in General

Several rules are applied to the general evaluation of Fortran expressions. This section covers the priority
of the different Fortran operators, the use of parentheses in specifying the order of evaluation, and the
rules for combining operators with operands.

Note: Any variable, array element, function, or character substring in an expression must be defined with
a value of the correct type at the time it is referenced.

Fortran 77 Language Reference Manual — Chapter 3, Expressions — 12

Precedence of Operators

Certain Fortran operators have precedence over others when combined in an expression. The previous
sections have listed the precedence among the arithmetic, logical, and expression operators. No
precedence exists between the relational operators and the single character operator (//). On the highest
level, the precedence among the types of expression operators, from highest to lowest, is

« arithmetic
* character
* relational

* logical

Integrity of Parentheses and Interpretation Rules

Use parentheses to specify the order in which operators are evaluated within an expression. Expressions
within parentheses are treated as an entity.

In an expression containing more than one operation, the processor first evaluates any expressions within
parentheses. Subexpressions within parentheses are evaluated beginning with the innermost
subexpression and proceeding sequentially to the outermost. The processor then scans the expression
from left to right and performs the operations according to the operator precedence described previously.

Chapter 4
Specification Statements

This chapter contains the following subsections:
« "AUTOMATIC, STATIC"

« "BLOCK DATA"

« "COMMON"

« "DATA"

» "Data Type Statements”

* "DIMENSION"

« "EQUIVALENCE"

« "EXTERNAL"

e "IMPLICIT"
* "INTRINSIC"
* "NAMELIST"

+ "PARAMETER"

« "POINTER"

* "PROGRAM"
« "RECORD"

* "SAVE"

¢ "STRUCTURE / UNION"

¢ "VOLATILE"

Specification statements are hon—-executable Fortran statements that provide the processor with
information about the nature of specific data and the allocation of storage space for this data.
The specification statements are summarized below.

AUTOMATIC , STATIC
Controls the allocation of storage to variables and the initial value of variables within
called subprograms.

BLOCK DATA First statement in a block data subprogram used to assign initial values to variables
and array elements in named common blocks.

COMMON Declares variables and arrays to be put in a storage area that is accessible to multiple
program units, thus allowing program units to share data without using arguments.

DATA Supplies initial values of variables, array elements, arrays, or substrings.

Fortran 77 Language Reference Manual — Chapter 4, Specification Statements — 1

Data type Explicitly defines the type of a constant, variable, array, external function, statement
function, or dummy procedure name. Also, can specify dimensions of arrays and the
length of the character data.

DIMENSION Specifies the symbolic names and dimension specifications of arrays.
EQUIVALENCE

Specifies the sharing of storage units by two or more entities in a program unit, thus
associating those entities.

EXTERNAL Identifies external or dummy procedure.

IMPLICIT Changes or defines default implicit type of names.

INTRINSIC Identifies intrinsic function or system subroutine.

NAMELIST Associates a group of variables or array names with a unique group name.

PARAMETER Gives a constant a symbolic name.

POINTER Establishes pairs of variables and pointers.

PROGRAM Defines a symbolic name for the main program.

RECORD Creates a record in the format specified by a previously de@aRUCTURE
statement.

SAVE Retains the values of variables and arrays after executioREBTERN or END

statement in a subprogram.

STRUCTURE Defines a record structure that can be referenced by one oREBG@RD
statement.

VOLATILE Prevents the compiler from optimizing specified variables, arrays, and common
blocks of data.

Detailed descriptions of these statements follow in alphabetical order.

AUTOMATIC, STATIC

STATIC andAUTOMATIC statements control, within a called subprogram, the allocation of storage to
variables and the initial value of variables.

Syntax

{STATIC | AUTOMATIC} V[, V]

wherev is the name of a previously declared variable, array, array declarator, symbolic constant, function,
or dummy procedure.

Method of Operation

Table 4-BSummarizes the differences betwstticandautomaticvariables on entry and exit from a

Fortran 77 Language Reference Manual — Chapter 4, Specification Statements — 2

subprogram.

Table 4-1 Static and Automatic Variables

AUTOMATIC STATIC

Entry Variables are unassigned. Theyalues of the variables in the
do not reflect any changes subprogram are unchanged
caused by the previous since the last execution of the
execution of the subprogram. subprogram.

Exit The storage area associated wiffhe current value of the variable
the variable is deleted. is retained in the static storage

area.

AUTOMATIC variables have two advantages:
« The program executes more efficiently by taking less space and reducing execution time.

« They permit recursion; a subprogram can call itself either directly or indirectly, and the expected
values are available on either a subsequent call or a return to the subprogram.

Rules for Use

» By default, unless you specify thstatic command line option (described in f7&1) manual page
and Chapter 1 of theortran 77 Programmer’s Guidgeall variables araUTOMATIC except

— initialized variables
— common blocks
— variables used IBQUIVALENCE statements

< Override the command line option in effect for specific variables by specifying as applicable the
AUTOMATIC orSTATIC keywords in the variable type statements, as well as iViReICIT
statement.

« Any variable irEQUIVALENCE , DATA, orSAVE statements is static regardless of any previous
AUTOMATIC specification.

Example

REAL length, anet, total(50)
STATIC length, anet, total
COMPLEX i, B(20), J(2,3,5)
STATIC i

IMPLICIT INTEGER(f,m-p)
IMPLICIT STATIC (f,m-p)

BLOCK DATA

BLOCK DATA s the first statement in a block data subprogram. It assigns initial values to variables and
array elements in named common blocks.

Fortran 77 Language Reference Manual — Chapter 4, Specification Statements — 3

Syntax
BLOCK DATA [suf

wheresubis the symbolic name of the block data subprogram in whicBtRECK DATA statement
appears.

Method of Operation

A block data subprogram is a non—executable program unit BTA statement as its first statement,
followed by a body of specification statements and terminated BijNBrstatement. The types of
specification statements inclu@®©MMON, DATA, DIMENSION, EQUIVALENCE , IMPLICIT
PARAMETER, SAVE, STRUCTURE declarations, and type statements. A block data subprogram can
also contain comment lines.

Only entities in named common blocks or entities associated with an entity in a common block can be
initially defined in a block data subprogram.

Rules for Use

« The optional namsubis a global name and must be unique. TBUL)CK DATA subprograms
cannot have the same external name.

e An executable program can contain more than one block data subprogram but cannot contain more
than one unnamed block data subprogram.

« Asingle block data subprogram can initialize the entities of more than one named common block.

COMMON

The COMMON statement declares variables and arrays so that they are put in a storage area that is
accessible to multiple program units, thus allowing program units to share data without using arguments.

Syntax
COMMON [/[ch] nlist[[,J/[chl/ nlisq...

where
cb is a common block name.
nlist is a list of variable names, array names, array declarators, or records.

Method of Operation

A storage sequence, composed of a series of storage units that are shared between program units, is
referred to asommon storagd-or each common block, a common block storage sequence is formed
consisting of the storage sequences of all entities in the list of variables and arrays for that common block.
The order of the storage sequence is the same as its order of appearance in the li§OkIE2N

Fortran 77 Language Reference Manual — Chapter 4, Specification Statements — 4

statement, the entities specified in the common blockligtfollowing a block nameb are declared to
be in common blockh.

In an executable program, all common blocks with the same name have the same first storage unit. This
establishes the association of data values between program units.

The storage sequence formed above is extended to include all storage units of any storage sequence
associated with it by equivalence association.

Fortran has the following types of common storage:

« Blankcommon storage does not have an identifying name and can be accessed by all program units
in which it is declared. One blank common area exists for the complete executable program.

* Namedcommon storage has an identifying name and is accessible by all program units in which
common storage with the same name is declared.

You can initially define entities in a named common block by usinB&WA initialization statement in
aBLOCK DATA subprogram. However, yaannotuse theDATA statement to initialize entities in
blank common block.

The number of storage units needed to store a common block is referred to as its size. This number
includes any extensions of the sequence resulting from equivalence association. The size of a named
common block must be the samelhprogram units in which it is declared. The size of blank common
block neechotbe the same size in all program units.

Rules for Use

« Avariable name, array name, array declarator, or record can appear only once in all common block
lists within a program unit.

» Specify a blank common block by omitting the common block rdrf@r each list. Thus, omitting
the first common block name places entities appearing in thalfssin a blank common block.

« Omitting the firstb makes the first two slashes optional. Two slashes without a block name between
them declare the entities in the following list to be in a blank common block.

* Any common block namebor an omitteab for a blank common block can occur more than once in
one or mor&€OMMON statements in a program unit. The list following each appearance of the
same common block name is treated as a continuation of the list for that common block name.

* As an extension to the standard, a named common block can be declared as having different sizes in
different program units. If the common block is not initially defined wil AT A statement, its size
will be that of the longest common block declared. However, if it is defined in one of the program
units withDATA statements, then its size is the size of the defined common block. In other words, to
work correctly, the named common block must be declared with the longest size when it is defined,
even though it can be declared with shorter sizes somewhere else. Defining a common block multiple
times produces incorrect results.

« The compiler aligns entities in a common block on 32-bit boundaries. You can change this alignment
using the compiler switchesalign8 and -align16. However, these changes can degrade

Fortran 77 Language Reference Manual — Chapter 4, Specification Statements — 5

performance. See tl@rtran 77 Programmer’s Guid®r more information.

Restrictions

« Names of dummy arguments of an external procedure in a subprogram must not appear in a common
block list.

e Avariable name that is also a function name must not appear in the list.

Examples

The following equivalent statements define a blank common block. (Note that theS®MMON
statements cannot appear in the same program unit).

COMMON //F,X,B(5)
COMMON F,X,B(5)

This declaration

COMMON /LABEL/NAME,AGE,DRUG,DOSE//Y(33),
Z,/RECORD/,DOC, 4 TIME(5), TYPE(8)

makes the followinCOMMON storage assignments:
« NAME, AGE, DRUG, andDOSE are placed in common blotiABEL .
e Y andZ are placed in a blank common block.

« DOC, TIME, andTYPE are placed in a common bloBEECORD.

The following program contains tW@OMMON statements: one in the calling program and one in the
subroutine. Both define the same four entities irXB&IMON even though each common statement
uses a unique set of names. The calling program can &08H8ION storage through the entitié®T,
A, K, andXMEAN . SubroutineADD has access to the same common storage through the use of the
entitiesPLUS, SUM, M, andAVG.

¢ THIS PROGRAM READS VALUES AND PRINTS THEM
¢ SUM AND AVERAGE
COMMON TOT, A(20), K, XMEAN
READ (5,10) K, (A(l), | = 1, K)
CALL ADD
WRITE (6,20) TOT, XMEAN
10 FORMAT (I5/F(10.0))
20 FORMAT (5X,5HSUM =,2X,F10.4/5X,
+ 12HMEAN VALUE =,2X,F10.4)
STOP
C
¢ THIS SUBROUTINE CALCULATES THE SUM AND AVERAGE
C

Fortran 77 Language Reference Manual — Chapter 4, Specification Statements — 6

COMMON PLUS, SUM(20), M, AVG
PLUS = SUM (1)
DO51=2,M
5 PLUS = SUM (I) + PLUS
AVG = PLUS / FLOAT (M)
END

DATA

TheDATA statement supplies initial values of variables, array elements, arrays, or substrings.

Syntax

DATA nlist/ clist' [[,] nlist/ clist]

where

nlist is a list of variable names, array names, array element names, substring names or
impliedPO lists (described later in this chapter) separated by commas.

clist clistis composed of one or more elements, separated by commas, of either of the

following formscr*c wherecis a constant or the symbolic name of a constasta
nonzero, unsigned integer constant or the symbolic name of a positive integer
constant. The second form impliesuccessive appearances of the constant c.

Method of Operation

In data initialization, the first value glistis assigned to the first entitymfist, the second value listto

the second entity inlist, and so on. There is a one—to—one correspondence between the items specified by
nlist and the constants suppliectiist Hence, eachlist and its correspondingist must contain the

same number of items and must agree in data type. If necessafistitenstant is converted to the type

or length of thalist entity exactly as for assignment statements.

If the length of the character entityrifistis greater than the length of its corresponding character

constant irclist, then blank characters are added to the right of the character constant. But if the length of
the character entity inlist is less than that of its corresponding constadlish the extra right most

characters in the constant are ignored; only the left most characters are stored. Each character constant
initializes only one variable, array element, or substring.

As an enhancement to Fortran 77, you can define an arithmetic or logical entity initially using a Hollerith
constant focin aclist, using the form

nHx1 X2 x3.. Xn

where
n is the number of charactens
Xi is the actual characters of the entity.

The value oh must be >g, whereg is the number of character storage units for the corresponding entity.

Fortran 77 Language Reference Manual — Chapter 4, Specification Statements — 7

If n <g, the entity is initially defined with the Hollerith characters extended on the right vgithnblank
characters. The compiler generates a warning message for data initializations of this type.

Rules for Use

Eachnlist and its correspondingist must have the same number of items and must correspond in
type when either iEOGICAL or CHARACTER. If either is of arithmetic type, then the other must
be of arithmetic type.

If an unsubscripted array name is specifiedlist, the correspondinglist must contain one constant
for each element of the array.

If two entities are associated in common storage, only one can be initialiZze4 Tiastatement.

Each subscript expressionrilist must be an integer constant expression, except for irdp{ied
variables.

Each substring expressionrilist must be an integer constant expression.

A numeric value can be used to initialize a character variable or element. The length of that character
variable or array element must be one, and the value of the numeric initializer must be in the range 0
through 255.

An untyped hexadecimal, octal, or binary constant can be used to initialize a variable or array
element. If the number of bits defined by the constant is less than the storage allocation for that
variable or array element, then leading zeros are assumed. If the number of bits exceed the number of
bits of storage available for the variable or array element, then the leading bits of the constant are
truncated accordingly.

A Hollerith constant can be used to initialize a numeric variable or array element. The rules for
Hollerith assignment apply.

Restrictions

The listnlist cannot contain names of dummy arguments, functions, and entities in blank common, or
those associated with entities in blank common.

Do not initialize a variable, array element, or substring more than once in an executable program. If
you do, the subsequent initializations will override the previous ones.

If a common block is initialized byRATA statement in a program unit, it cannot be initialized in
other program units.

Example

Given the following declarations,

REAL A(4), b
LOGICAL T
COMPLEX C

Fortran 77 Language Reference Manual — Chapter 4, Specification Statements — 8

INTEGER P, K(3),R
CHARACTER*5 TEST(4)
PARAMETER (P=3)
DATA A,B/0.,12,5.12E5,0.,6/, T.TRUE./,
+ C/(7.2, 1.234)/,K/P*0],
+ TEST/3*MAYBE’,DONE?’/

theDATA statement above defines the variables declared immediately preceding it as follows:

A(1) = .OE+00 A(2) = .12E+02

A(3) = .512E+06 A(4) = .OE+00

B=6

T = TRUE.

C = (.72E+01, .1234+01)

K(1)=0 K(2)=0K(@3)=0

TEST(1) = 'MAYBE’ TEST(2) = 'MAYBE’
TEST(3) = '"MAYBE’ TEST(4) = 'DONE?’

The following statements are examples of impid statements usingATA statements:

DATA LIMIT 71000/, (A(l), I= 1,25)/25%0/

DATA ((A(1,d), J = 1,5), | = 1,10)/50*1.1/

DATA (X(,1), | = 1,100) /100 * 1.1/

DATA ((A(1,d), J = 1,1), 1 =1,3)/11,21,22,31,32,33/

Data Type Statements

The data type statement explicitly defines the type of a constant, variable, array, external function,
statement function, or dummy procedure name. It can also specify dimensions of arrays and the length of
character data. The two kinds of data type statements are numeric and character.

Numeric Data Types

Use numeric data types to

« override implicit typing

« explicitly define the type of a constant, variable, array, external function, statement function, or
dummy procedure name

« specify dimensions of arrays

Syntax
type v[* len [/ clist]][, v[* lenl/ clist]]
where

type is one of the keywords listed in Table 4-2

Fortran 77 Language Reference Manual — Chapter 4, Specification Statements — 9

% is a variable name, array name, array declarator, symbolic name of a constant,
function name, or dummy procedure name.

len is one of the acceptable lengths for the data type being dedtareddone of the
following: an unsigned, nonzero integer constant; a positive-value integer constant
expression enclosed in parentheses; or an asterisk enclosed in parentheses (*). If the
type being declared is an arrignfollows immediately after the array name.

clist is a list of values bounded by slashes; the value becomes the initial value of the type
being declared.

Table 4-2 Keywords for Type Statements

INTEGER COMPLEX
INTEGER*1 DOUBLE COMPLEX
BYTE COMPLEX*8
INTEGER*2 COMPLEX*16
INTEGER*4

LOGICAL REAL

LOGICAL*1 REAL*4

LOGICAL*2 REAL*8

LOGICAL*4 REAL*16

DOUBLE PRECISION

Note: When the complier encounter®RBAL*16 declaration, it issues a warning mess&ieAL*16
items are allocated 16 bytes of storage per element, but only the first 8 bytes of each element are used;
those 8 bytes are interpreted according to the form&Haéd_*8 floating numbers.

The following pairs of keywords are synonymous:
« BYTE andINTEGER*1

* REAL andREAL*4

« DOUBLE PRECISION andREAL*8

¢ COMPLEX andCOMPLEX*8

e DOUBLE COMPLEX andCOMPLEX*16

* LOGICAL andLOGICAL*4

See Chapter 2 of tHeortran 77 Programmer’s Guidir information on the alignment, size, and value
ranges of these data types.

Method of Operation

The symbolic name of an entity in a type statement establishes the data type for that name for all its
subsequent appearances in the program unit in which it is declared.

Thetypespecifies the data type of the corresponding entities. That INTESER statement explicitly

Fortran 77 Language Reference Manual — Chapter 4, Specification Statements — 10

Thetypespecifies the data type of the corresponding entities. That INTESER statement explicitly
declares entities of type integer and overrides implicit typing of the listed namd¥EAhestatement
specifies real entities, tlBOMPLEX statement specifies complex entities, and so on.

Rules for Use

« Type statements are optional and must appear in the beginning of a program unit. However, type
statements can be preceded byMRLICIT statement.

e Symbolic names, including those declared in type statements, have the scope of the program unit in
which they are included.

< A program unit can contain type statements that begin with identical keywords.
« Do not explicitly specify the type of a symbolic name more than once within a program unit.
< Do not use the name of a main program, subroutine, or block data subprogram in a type statement.

e The compiler providesBOUBLE COMPLEX version of the functions in Table 4-3

Table 4-3 Double Complex Functions

Name Purpose

demplx Explicit type conversion

dconjg Complex conjugate

dimag Imaginary part of complex argument
zabs Complex absolute value

e The -i2 compiler option (see tH&71) man page or Chapter 2 of thertran 77 Programmer’s
Guideg causes the following to take place:

— converts integer constants whose values are within the range allowedIféTH@ER*2 data
types tdNTEGER*2

— converts the data type of variable returned by a functithteBGER*2 , where possible

- ensures that variables of typ®GICAL occupy the same amount of storagéNaREGER*2
variables

Examples

REAL length, anet, TOTAL(50)

INTEGER hour, sum(5:15), first, uvr(4,8,3)
LOGICAL bx(1:15,10), flag, stat
COMPLEX 1, B(20), J(2,3,5)

The code above declares that

« lengthandanetare names of type real. The specificatioardt confirms implicit typing using the
first letter of the name and could have been omitted iRE#RL statement.

e TOTAL is areal array.

* hour andfirst are integer nameayr andsumare integer arrays and illustrate the use of the type

Fortran 77 Language Reference Manual — Chapter 4, Specification Statements — 11

hour andfirst are integer namesyr andsumare integer arrays and illustrate the use of the type
statement to specify the dimensions of an array. Note that when an array is dimensioned in a type
statement, a separddMENSION statement to declare the array is not permitted.

« flag andstat are logical variabledyx is a logical array.

« |is a complex variabld andJ are complex arrays.

Character Data Types

Character data type statements declare the symbolic name of a constant, variable, array, external function,
statement function, or dummy procedure name and specify the length of the character data.

Syntax

CHARACTER [*len[,]] nam[, nanj...

where
len is a length specification that gives the length, in number of characters, of a character
variable, character array element, character constant, or character flgrct®ane
of the following:
e anunsigned, nonzero integer constant
» a positive—value integer constant expression enclosed in parentheses
* an asterisk enclosed in parentheses (*)
nam is one of the followingv [*len] wherev is a variable name, symbolic name of a

constant, function name, or dummy procedure agek [*len] wherea(d) is an
array declarator

Rules for Use

* The length specificatiolen that follows the keywor@HARACTER denotes the length of each
entity in the statement that does not have its own length specification.

* Alength specification immediately following an entity applies only to that entity. The length
specified when an array is declared applies to each array element.

« If no length specification is given, a length of one is assumed.

» The length specifier of (*) can be used only for names of external functions, dummy arguments of an
external procedure, and character constants.

— For a character constant, the (*) denotes that the length of the constant is determined by the
length of the character expression given inRAMRAMETER statement.

- For a dummy argument of an external procedure, the (*) denotes that the length of the dummy
argument is the length of the actual argument when the procedure is invoked. If the associated
actual argument is an array name, the length of the dummy argument is the length of an element
of the actual array.

Fortran 77 Language Reference Manual — Chapter 4, Specification Statements — 12

— For an external function name, the (*) denotes that the length of the function result value and the
local variable with the same name as the function entry name is the length that is specified in the
program unit in which it is referenced. Note that the function name must be the name of an entry
to the function subprogram containing thiPE statement.

< If an actualenis declared for an external function in the referencing program unit and in the function
definition,len must agree with the length specified in the subprogram that specifies the function. If
not, then the function definition must use the asterisk (*) as covered previously, but tHeraictual
the referencing unit must not be (*).

» The length specified for a character statement function or statement function dummy argument of
type character must be an integer constant expression.

Example

CHARACTER name*40, gender*1, pay(12)*10

The above declaration defines

e nameas a character variable with a length of 40

* genderas a character variable with a length of one

e payas a character array with 12 elements, each of which is 10 characters in length

DIMENSION

TheDIMENSION statement specifies the symbolic names and dimension specifications of arrays.

Syntax
DIMENSION a(d)[, a(d)]...
wherea(d) is an array declarator.

To be compatible with PDP-11 Fortran, WWRTUAL statement is synonymous with tABMENSION
statement and carries the identical meaning.

Method of Operation

A symbolic namecappears in BIMENSION statement causing an arraip be declared in that
program unit.

Rules for Use
« The dimension specification of an array can appear only once in a program unit.

e The name of an array declared iDBMENSION statement can appear in a type statement or a
COMMON statement without dimensioning information.

Fortran 77 Language Reference Manual — Chapter 4, Specification Statements — 13

Examples

The followingDIMENSION statement declaresas an array of 25 elemendsas an array of 36 elements
(6 x 6), andamsas an array of 50 elements (2 x 5 x 5).

DIMENSION z(25), a(6,6), ams(2,5,5)

EQUIVALENCE

TheEQUIVALENCE statement allows two or more entities in a program unit to share storage units, thus
associating those entities. This statement allows the same information to be referenced by different names
in the same program unit.

Syntax
EQUIVALENCE (nlist) [,(nlist)] ...

wherenlistis a list of variable names, array element names, array nhames, and character substring names.

Method of Operation

The storage sequences of the entities in the list must have the same first storage unit. This requirement
associates the entities in the list or other elements as welEQU&/ALENCE statement only

associates storage units and does not cause type conversion or imply mathematical equivalence. Thus, if a
variable and an array are equivalenced, the variable does not assume array properties and vice versa.

Character entities can be associated by equivalence only with other character entities. Specify the
character entities, character variables, character array names, character array element names, or character
substring names. Association is made between the first storage units occupied by the entities appearing in
the equivalence list of @BQUIVALENCE statement. This statement can associate entities of other

character elements as well. The lengths of the equivalenced character entities are not required to be equal.

Variables and arrays can be associated with entities in common storage to lengthen the common block.
However, association through the use ofEEJIVALENCE statement must not cause common storage
to be lengthened by adding storage units before the first storage unit in the common block.

Rules for Use

« Each subscript expression or substring expression in an equivalence list must be an integer constant
expression.

« If an array element name is specified ireEUIVALENCE statement, the number of subscript
expressions must be the same as the number of dimensions declared for that array.

* An array name without a subscript is treated as an array element name that identifies the first element
of the array.

* Multidimensional array elements can be referred to iBEQUIVALENCE statement with only one
subscript. The compiler considers the array to be one-dimensional according to the array element
ordering of Fortran. Consider the following example:

Fortran 77 Language Reference Manual — Chapter 4, Specification Statements — 14

DIMENSION a(2,3), b(4:5,2:4)

The following shows a valiEQUIVALENCE statement using the arragsindb:
EQUIVALENCE (a(1,1), b(4,2))

The following example achieves the same effect:

EQUIVALENCE (a(1), b(4))

The lower-bound values in the array declaration are always assumed for missing subscripts (in the above
example, 1 through 3 for arrayand 2 through 4 for arrdy).

Restrictions

* Names of dummy arguments of an external procedure in a subprogram cannot appear in an
equivalence list.

« Avariable name that is also a function name cannot appear in the list.
« A storage unit can appear in no more thanEQ&IVALENCE storage sequence.

« AnEQUIVALENCE statement cannot specify hon—consecutive storage positions for consecutive
storage units.

« AnEQUIVALENCE statement cannot associate a storage unit in one common block with any
storage unit in differentcommon block.

Example 1
The two statements below are represented in storage as shown in Figure 4-1

DIMENSION M(3,2),P(6)
EQUIVALENCE (M(2,1),P(1))

M M2 AN M CEA 3 MO 20 Miz,20 M {3,205

L1l 1]

Py | Fi2) | PO3) | Play | P(S) | F(E)

Figure 4-1 Storage Representation of an EQUIVALENCE Statement

Example 2

The two statements below cause the logical representation in storage shown in Figure 4-2

Fortran 77 Language Reference Manual — Chapter 4, Specification Statements — 15

CHARACTER ABT*6, BYT(2)*4, CDT*3
EQUIVALENCE (ABT, BYT(1)),(CDT, BYT(2))

ART

Figure 4-2 Logical Representation of an EQUIVALENCE Statement

Example 3

The following statements are invalid because they specify non—consecutive storage positions for
consecutive storage units.

REAL A(2)
DOUBLE PRECISION S(2)
EQUIVALENCE (A(1), S(1)), (A(2), S(2))

Note that a double—precision variable occupies two consecutive numeric storage units in a storage
sequence.

EXTERNAL

TheEXTERNAL statement specifies a symbolic name to represent an external procedure or a dummy
procedure. The symbolic name can then be used as an actual argument in a program unit.

Syntax
EXTERNAL proc[, prod ...

whereprocis the name of an external procedure or dummy procedure.

Rules for Use

* An external procedure name or a dummy procedure name must appeBXIREERNAL statement
in the program unit if the name is to be used as an actual argument in that program unit.

« If an intrinsic function name appears inEBXTERNAL statement, indicating the existence of an
external procedure having that name, the intrinsic function is not available for use in the same
program unit in which thEXTERNAL statement appears.

< A symbolic name can appear only once in allEX8 ERNAL statements of a program unit.

Fortran 77 Language Reference Manual — Chapter 4, Specification Statements — 16

¢ A NOF77 qualifier in anOPTIONS statement or thenof77 command line option permits the
following:

— Intrinsic function names can appear in the list of subprogramstEX&ERNAL statement.

- An asterisk (*) can precede program names listed BEXarERNAL statement. This indicates
that a user—supplied function has the same name as a Fortran intrinsic function and that the
user—supplied function is to be invoked.

Restriction

Do not specify a statement function name IrEXTERNAL statement.

Example
Consider the following statements:

EXTERNAL G
CALL SUB1 (X,Y,G)

and the corresponding subprogram:

SUBROUTINE SUBL (RES, ARG, F)
RES = F(ARG)
END

The dummy argumeiit in subroutineSUB1is the name of another subprogram; in this case, the external
functionG.

IMPLICIT

TheIMPLICIT statement changes or defines default-implicit types of names. This section explains the
three syntactic forms of thBIPLICIT statement.

Syntax 1

IMPLICIT typ(a, a...)[, typ(al, al...)]...

where

typ is a valid data type.

a is either a singlalphabeticcharacter or a range of letters in alphabetical order. A

range of letters is specified Bs-12, wherdl and2 are the first and last letters of the
range, respectively.

AnIMPLICIT statement specifies a type for all variables, arrays, external functions, and statement
functions for which no type is explicitly specified by a type statement. If a name has not appeared in a
type statement, then its type is implicitly determined by the first character of its nariid PTH&IT
statement establishes which data type (and length) will be used for the indicated characters.

Fortran 77 Language Reference Manual — Chapter 4, Specification Statements — 17

By default, names beginning with the alphabetic characters A through H or O through Z are implicitly
typedREAL ; names beginning with I, J, K, L, M, or N are implicitly tydBld EGER . Use the
IMPLICIT statement to change the type associated with any individual letter or range of letters.

AnIMPLICIT statement applies only to the program unit that contains it and is overridden by a type
statement or BUNCTION statement in the same subprogram.

Syntax 2

IMPLICIT {AUTOMATIC | STATIC} (a, a...)
[typ(a al.)]

AnAUTOMATIC orSTATIC keyword in aiMPLICIT statement causes all associated variables to be
assigned automatic or static storage characteristics. See the descriptioAldT @RIATIC and

STATIC statements earlier in this chapter for information on their function. An example using these
keywords is also given.

Syntax 3
IMPLICIT {UNDEFINED | NONE}
Note: UNDEFINED andNONE are synonymous and, therefore, perform the same function.

When a type is not declared explicitly for a variable, the implicit data typing rules cause a default type of
INTEGER to apply if the first letter of the variable is i, j, k, I, m, or rR&AL if the first letter is any
other alphabetic character.

Use thdMPLICIT UNDEFINED statementMPLICIT NONE statement, or theu command line
option to turn off the implicit data typing.

Using Syntax 3 of thBMPLICIT statement within a program allows you to override the default
assignments given to individual characters; theommand line option (see Chapter 1 of Fogtran 77
Programmer’s Guideoverrides the default assignments for all alphabetic characters.

The following declaration
IMPLICIT UNDEFINED

turns off the implicit data typing rules for all variables. The example has the same effect as specifying the
-ucommand line option.

Rules for Use

The following rules are for all three syntactic forms ofIMELICIT statement.

« IMPLICIT statements must precede all other specification statements EAGRAMETER
statements.

e Multiple IMPLICIT statements are allowed in a program unit.

« IMPLICIT statements cannot be used to change the type of a letter more than once inside a program
unit. Because letters can be part of a range of letters as well as stand alone, ranges of letters cannot
overlap.

Fortran 77 Language Reference Manual — Chapter 4, Specification Statements — 18

« Lowercase and uppercase alphabetic characteroadestinguished. Implicit type is established for
boththe lower- and uppercase alphabetic characters or range of alphabetic characters regardless of
the case dfl andl2.

e The -ucommand line option turns off all default data typing and any data typing explicitly specified
by anIMPLICIT statement.

Examples
Consider the following example:

IMPLICIT NONE

IMPLICIT INTEGER (F,M-P)
IMPLICIT STATIC (F,M-P)
IMPLICIT REAL (B,D)
INTEGER bin, dale

The previous statements declare that

e All variables with names beginning with the letters F(f), M(m), N(n), O(0), or P(p) are of type
INTEGER and are assigned tB&ATIC attribute.

« All variables with names beginning with the letter B(b) or D(d) are of RBAL, except for
variableshin anddale which are explicitly defined as tyféTEGER .
The following foudMPLICIT statements are equivalent:

IMPLICIT CHARACTER (g - k)
IMPLICIT CHARACTER (g - K)
IMPLICIT CHARACTER (G - k)
IMPLICIT CHARACTER (G - K)

INTRINSIC

INTRINSIC statements associate symbolic names with intrinsic functions and system subroutines. The
name of an intrinsic function can be used as an actual argument.

Syntax

INTRINSIC func[, fund ...

wherefuncis a name of intrinsic functions.

Rules for Use

« The name of every intrinsic function or system subroutine used as an actual argument must appear in
anINTRINSIC statement in that program unit.

* A symbolic name can appear only once in all ol MiERINSIC statements of a program unit.

Fortran 77 Language Reference Manual — Chapter 4, Specification Statements — 19

Restrictions

e The same name cannot appear in botiNGHRINSIC and arEXTERNAL statement in the same
program unit.

e The same name can appear only once in aINRINSIC statements of a program unit.

* The names of intrinsic functions that perform type conversion, test lexical relationship, or choose
smallest/largest value cannot be passed as actual arguments. These functions include the conversion,
maximum-value, and minimum-value functions listépjmendix A, "Intrinsic Functions."

Examples
Consider the following statements:

INTRINSIC ABS
CALL ORD (ABS, ASQ, BSQ)

and the corresponding subprogram:

SUBROUTINE ORD(FN,A,B)
A =FN (B)

RETURN

END

In the above example, thdTRINSIC statement allows the name of the intrinsic funcA&$s (for
obtaining the absolute value) to be passed to subprdgRIn

NAMELIST

TheNAMELIST statement associates a group of variables or array hames with a unique group—name in a
namelist—directed 1/O statement.

Syntax
NAMELIST / group—namienamelist] / group—namie namelist.

wheregroup—namis the name to be associated with the variables or array names defiagtlist
Each item imamelistimust be separated by a comma.

Rules for Use
e The items imamelistare read or written in the order they are specified in the list.
« The items can be of any data type, which can be specified either explicitly or implicitly.
e The following items are not permittedrnamelist
— dummy arguments

— array elements

Fortran 77 Language Reference Manual — Chapter 4, Specification Statements — 20

— character substrings
- records
- record fields

See also the description of tREAD andWRITE statements in Chapter 8, "Input/Output Statements,"
for more information on namelist—directed I/O.

Examples

In the following statemeninput, when specified to a namelist—directed I/O statement, refestand
quantity; likewise,output refers tatem andtotal:

NAMELIST /input/ item, quantity /output/ item, total

PARAMETER

ThePARAMETER statement assigns a symbolic name to a constant.

Syntax

Format 1

PARAMETER fp=e[, p=q...)
Format 2

PARAMETER)=e[, p=d ...

where
p is a symbolic name.
e is a constant, constant expression, or the symbolic name of a constant.

Method of Operation

The value of the constant expression e is given the symbolicmarhe statement defingsas the
symbolic name of the constant. The value of the constant is the value of the exjgraftsioconversion
to the type namp. The conversion, if any, follows the rules for assignment statements.

Format 1, which has bounding parentheses, causes the symbolic name to be typed either of the following
ways:

« According to a previous explicit type statement.
« If no explicit type statement exists, the name is typed according to its initial letter and the implicit

rules in effect. See the description of tRePLICIT statement in "IMPLICIT" for details.

Format 2, which has no bounding parentheses, causes the symbolic name to be typed by the form of the
actual constant that it represents. The initial letter of the name and the implicit rules do not affect the data

type.

Fortran 77 Language Reference Manual — Chapter 4, Specification Statements — 21

A symbolic name in ARAMETER statement has the scope of the program unit in which it was
declared.

Rules for Use

« If pis of type integer, real, double precision, or compenrust be an arithmetic constant
expression.

» If pis of type character or logic@must be a character constant expression or a logical constant
expression, respectively.

« If a named constant is used in the constant expregsitomust be previously defined in the same
PARAMETER or a precedinPARAMETER statement in the same program unit.

« A symbolic name of a constant must be defined only onc® ARAMETER statement within a
program unit.

* The data type of a named constant must be specified by a type stateWPILIQIT statement
before its first appearance iPARAMETER statement if a default implied type is not to be
assumed for that symbolic name.

e Character symbolic named constants must be specified as type charaGEARACTER
statement, or the first letter of the name must appearlMRRICIT statement with the type
CHARACTER. Specification must be made before the definition of the name RARAMETER
statement.

« Once a symbolic name is defined, it can be used as a primary in any subsequent expressions or
DATA statements in that program unit.

* The functiondAND, IOR, NOT, IEOR, ISHFT, LGE, LGT, LLE, andLLT with constant
operands can be specified in a logical expression.

« The functionrCHAR with a constant operand can be specified in a character expression.

e The functionsvIN, MAX, ABS, MOD, ICHAR, NINT, DIM, DPROD, CMPLX, CONJG, and
IMAG with constant operands can be specified in arithmetic expressions.

« Symbolic names cannot specify the character count for Hollerith constants.

« Symbolic constants can appear IR@GRMAT statement only within the context of a general
expression bounded by angle brackets (<>).

« Symbolic constants cannot appear as part of another constant except when forming the real or
imaginary part of a complex constant.

Restrictions

A constant and a symbolic name for a constant are generally not interchangeable. For example, a
symbolic name of an integer constant cannot be used as a length specificaGbtARACTER type
statement without enclosing parentheses. For inst@ht8RACTER*(l) is valid, buCHARACTER*I

Fortran 77 Language Reference Manual — Chapter 4, Specification Statements — 22

is not.

However, a symbolic name of a constant can be used to form part of another constant, such as a complex
constant, by using an intrinsic function as shown below:

complex c

real r

parameter (r = 2.0)
parameter (c = cmplx(1.0,r))

Examples
The following statements declare that 1 is converted to 1EO, m¥kimg name of REAL constant:

REAL X
PARAMETER (X = 1)

The following example converts 3.14 to 3, maKitige name of aiNTEGER constant:

INTEGER |
PARAMETER (I = 3.14)

The following example assigns the constant value of .0877@®et@st rate

REAL*4 interest_rate
PARAMETER (interest_rate = .087769)

The same result could be achieved using Format 2 as follows:

PARAMETER interest_rate = .087769

POINTER

ThePOINTER statement establishes pairs of variables and pointers where each pointer contains the
address of its paired variable.

Syntax
POINTER (pL v) [,(p2 v2..]

where
vlandv2 are pointer—based variables.
plandp2 are the corresponding pointers. The pointer integers are automatically typed that way

by the compiler. The pointer—based variables can be of any type, including structures.
Even if there is a size specification in the type statement, no storage is allocated when
such a pointer—-based variable is defined.

Rules for Use

e Once you have defined a variable as based on a pointer, you must assign an address to that pointer.
Reference the pointer—based variable with standard Fortran, and the compiler does the referencing by

Fortran 77 Language Reference Manual — Chapter 4, Specification Statements — 23

the pointer. (Whenever your program references a pointer-based variable, that variable’s address is
taken from the associated pointer.) Provide an address of a variable of the appropriate type and size.

* You must provide a memory area of the right size, and assign the address to a pointer, usually with
the normal assignment statement or data statement, because no storage is allocated when a
pointer—based variable is defined.

Restrictions

* A pointer-based variable cannot be used as a dummy argumeB8GMIMON , EQUIVALENCE ,
DATA, orNAMELIST statements.

* A pointer-based variable cannot itself be a pointer.

« The dimension expressions for pointer—based variables must be constant expressions in main
programs. In subroutines and functions, the same rules apply for pointer—based variables as for
dummy arguments. The expression can contain dummy arguments and variGiaasNtON
statements. Any variable in the expressions must be defined with an integer value at the time the
subroutine or function is called.

Example
The following program usesROINTER statement:

pointer (ptr,v), (ptr2, v2)
character a*12, v*12, z*1, v2*12
data a/'abcdefghijkl’/
ptr = loc (a)

ptr = ptr +4

ptr2 = malloc (12)
v2=a

z=v(1:1)

print *, z

z =v2(5:5)

print *, z

call free (ptr2)

end

PROGRAM

The PROGRAM statement defines a symbolic name for the main program.

Syntax
PROGRAMgmM

wherepgmis a symbolic name of the main program, which cannot be the name of an external procedure,
block data subprogram, or common block or a local name in the same program unit.

Fortran 77 Language Reference Manual — Chapter 4, Specification Statements — 24

Rules for Use

- ThePROGRAM statement is optional. However, it must be the first statement in the main program
when used.

e The symbolic name must be unique for that executable program. It must not be the name of any
entity within the main program or any subprogram, entry, or common block.

RECORD

TheRECORD statement creates a record in the format specified by a previously dSI&RECTURE
statement. The effect ofRECORD statement is comparable to that of an ordinary type declaration.

Syntax

RECORD /structure—nameaecord—nanjg record—-nanje
[, record-nanje..[/ structure—nanie
record-nanje record-nanjg record-nanie..]

where

structure—name is the name of a previously declared structure (see the description of the
STRUCTURE statement in "STRUCTURE / UNION").

record—name is a variable, an array, or an array declarator.

Method of Operation

Therecord—namean be used @OMMON andDIMENSION statements but not DATA,
EQUIVALENCE , NAMELIST , orSAVE statements. Records created byRE€CORD statement are
initially undefined unless the values are defined in the related structure declaration.

Examples

In the following statements, the recdaitbsthas the format specified by the structwesather, pastis an
array of 1,000 records, each record having the format of the structatieer.

STRUCTURE /weather/
integer month, day, year
character*40 clouds
real rainfall

end structure

record /weather/ latest, past (1000)

Individual items in the structure can be referenced usiogrd—namand the name of the structure item.
For example

past(n).rainfall = latest.rainfall

Fortran 77 Language Reference Manual — Chapter 4, Specification Statements — 25

wheren represents a number from 1 to 1,000 specifying the target array element. See the description of the
STRUCTURE statement in this chapter for an example of how to declare a structure format.

SAVE

The SAVE statement retains the values of variables and arrays after executiBE ©U&RN or END
statement in a subprogram. Therefore, those entities remain defined for subsequent invocations of the
subprogram.

Syntax

SAVE[&, a] ...]

wherea is one of the following:
* Avariable or array name

« A common block name, preceded and followed by slashes

Method of Operation

The SAVE statement prevents named variables, arrays, and common blocks from becoming undefined
after the execution of RETURN or END statement in a subprogram. Normally, all variables and arrays
become undefined on exit from a subprogram, except when they are

« specified by SAVE statement

« defined in DATA statement

« used in arEQUIVALENCE statement

« contained in a blank common

» contained in a named common that is declared in the subprogram and in a calling program unit in

SAVE statements

All variables and arrays declared in the main program maintain their definition status throughout the
execution of the program. If a local variable or array is not in a common block and is speca¥i a
statement, it has the same value when the next reference is made to the subprogram.

All common blocks are treated as if they had been name8AV& statement. All data in any common
block is retained on exit from a subprogram.

Note: DefaultSAVE status for common blocks is an enhancement to Fortran 77. In Fortran 77, a
common block named without a correspondB#g/E statement causes the variables and arrays in the
named common block to lose their definition status on exit from the subprogram.

Rules for Use

« A SAVE statement without a list is treated as though all allowable entities from that program unit
were specified on the list.

Fortran 77 Language Reference Manual — Chapter 4, Specification Statements — 26

* The main program can contaittAVE statement, but it has no effect.

* A given symbolic name can appear in only 8A&/E statement in a program unit.

Restrictions

Procedure names and dummy arguments cannot appe@AMEastatement. The names of individual
entries in a common block are not permitted 8A%/E statement.

Examples
The following statements are exampleSANE statements:

SAVE L,V
SAVE /DBASE/

STRUCTURE / UNION

The STRUCTURE statement defines a record structure that can be referenced by one RE@ORD
statement.

Syntax (General)

STRUCTURE [/ structure—-nanig[field—-nam@s
[field—definitioh
[field—definitioh...

END STRUCTURE

where

structure-name identifies the structure in a subsequRECORD statement. Substructures can be
established within a structure by means of either a nEFIBWCTURE declaration
or aRECORD statement.

field—names (for substructure declarations only) one or more names having the structure of the
substructure being defined.

field—definition can be one or more of the following:

* Typed data declarations, which can optionally include one or more data
initialization values.

e Substructure declarations (defined by eiRECORD statements or subsequent
STRUCTURE statements).

* UNION declarations, which are mapped fields defined by a block of statements.
The syntax of &NION declaration is described below.

 PARAMETER statements, which do not affect the form of the structure.

UNION Declaration Syntax

Fortran 77 Language Reference Manual — Chapter 4, Specification Statements — 27

A UNION declaration is enclosed betwadiNION andEND UNION statements, which contain two
more map declarations. Each map declaration is enclosed beéf\a&eandEND MAP statements.

UNION
MAP
[field—definitioh[field-definitio...
END MAP
MAP
[field—definitioh[field—definitioh...
END MAP
[MAP
[field—definitioh[field-definitio...
END MAP]
END UNION

Method of Operation

* Typed data declarations (variables or arrays) in structure declarations have the form of normal
Fortran typed data declarations. Data items with different types can be freely intermixed within a
structure declaration.

« Unnamed fields can be declared in a structure by specifying the pseud&afdinhe in place of an
actual field name. You can use this mechanism to generate empty space in a record for purposes such
as alignment.

« All mapped field declarations that are made withtNION declaration share a common location
within the containing structure. When initializing the fields withtdION, the final initialization
value assigned overlays any value previously assigned to a field definition that shares that field.

Examples (General)

structure /weather/

integer month, day, year
character*20 clouds
real rainfall

end structure
record /weather/ latest

In the preceding example, t8B8 RUCTURE statement produces the storage mapping, shown in Figure
4-3for thelatestspecification in th&ECORD statement.

Fortran 77 Language Reference Manual — Chapter 4, Specification Statements — 28

ottt
4
day
=2
W Eear
12
cloudds
a2
Faitifall

Figure 4-3 Logical Representation of a STRUCTURE Statement
The following gives an example of initializing the fields within a structure definition block:

program weather

structure /weather/
integer*l month /08/, day /10/, year /89/
character*20 clouds /" overcast'/
real rainfall /3.12/

end structure

record /weather/ latest

print *, latest.month, latest.day, latest.year,

+ latest.clouds, latest.rainfall

The above example prints the following:

8 10 89 overcast 3.120000

Examples (UNION)

program writedate
structure /start/
union
map

Fortran 77 Language Reference Manual — Chapter 4, Specification Statements — 29

character*2 month
character*2 day
character*2 year
end map
map
character*6 date
end map
end union
end structure
record /start/ sdate
sdate.month = ‘08’
sdate.day = ’'10’
sdate.year = '89’
write (*, 10) sdate.date
10 format (a)
stop
end

In the above example, text is written to the standard I/O device as follows:

081089

VOLATILE

TheVOLATILE statement prevents the compiler from optimizing specified variables, arrays, and
common blocks of data.

Syntax
VOLATILE volatile-items

wherevolatile-items$s one or more names of variables, common blocks, or arrays, each separated by a
comma

For more information on optimization, refer to tRéX System Programming Guidad theg77(1)
manual page.

Chapter 5
Assignment and Data Statements

This chapter contains the following subsections:

« "Arithmetic Assignment Statements"”

* "Logical Assignment Statements"

e "Character Assignment”

- "Aggregate Assignment"

* "ASSIGN"

» "Data Initialization"

e "Implied-DO Lists"
Assignment statements assign values to variables and array elements. Data statements ab@®implied—
lists in data statements are used to initialize variables and array elements.
The five types of Fortran assignment statements are

e arithmetic

* logical

e character

e aggregate

« statement label

This chapter explains how to use each of these statements. Each type is discussed in detail in the
following sections.

Arithmetic Assignment Statements

An arithmetic assignment statement assigns the value of an arithmetic expression to a variable or array
element of typdNTEGER , REAL, DOUBLE PRECISION, COMPLEX , orDOUBLE COMPLEX .
The form of an arithmetic statement is

v= e

where

% is the name of an integer, real, double—precision, complex, or double-complex type
variable or array element.

e is an arithmetic expression.

When an arithmetic assignment statement is executed, the expedsstmaluated and the value
obtained replaces the value of the entity to the left of the equal sign.

Fortran 77 Language Reference Manual — Chapter 5, Assignment and Data Statements — 1

The valuew ande need not be of the same type; the value of the expression is converted to the type of the
variable or array element specified. Table I&td the type conversion rules.

Table 5-1Type Conversion Rules

Declaration Function Equivalent
INTEGER INT@

REAL REAL(®
DOUBLE PRECISION DBLE$
COMPLEX CMPLX(@
DOUBLE COMPLEX DCMPLX@

The following are examples of arithmetic assignment statements:

1=4 Assign the value 4 to
J=7 Assign the value 7 o
A=1*J+1 Assign the value 29 b

Table 5-3jives the detailed conversion rules for arithmetic assignment statements. The functions in the
second column of the table are intrinsic functions described in Chapter 10, "Statement Functions and
Subprograms" and Appendix A, "Intrinsic Functions."

Table 5-2 Conversion Rules for Assignment Statements

Variable or INTEGER or REAL REAL *8 REAL *16 COMPLEX COMPLEX *16
Array LOGICAL Expression (€) Expression (€) Expression (€) Expression (€) Expression (€)
Element (v) Expression (e)
INTEGER or Assignetov Truncateeto Truncateeto integer Truncateeto integer Truncate real part Truncate real part
LOGICAL integer and and assign te and assign te ofeto integer and ofeto integer and
assign tov assign tov assign tov
REAL Append fraction Assignetov Assign high—-order Assign high—order Assign real part of Assign
(.0) to eand portion ofetov, part ofetoy; etov, imaginary high—-order part of
assign tov low-order portion of low-order part is part ofenot used real part okto v,
eis rounded rounded low—order portion
of real pareis
rounded
REAL *8 Append fraction Assigneto Assignetov As above Assigeto Assign real part
(.0) to eand high—order high—order portionofetov
assign tov portion ofv ofv, low-order
low—-order portion ofvis 0
portion ofvis 0
REAL *16 As above As above As above As above As above As above
COMPLEX Append fractionAssigneto real Assign high—order Assign high—order Assignetov High-order parts
toe and assign part ofv, portion ofeto real portion ofeto real of real and
to real part of, imaginary part part of, low—order part ofy; low—order imaginary
imaginary part ofvis 0.0 portion ofeis part is rounded; components o
ofvis 0.0 rounded; imaginary imaginary part of is are assigned tp
part ofv is 0.0 0.0 low-order parts
are rounded
COMPLEX Append fraction Assigneto Assigneto real part As above Assigeto Assignetov
*16 toe and assign high—-order ofyv, imaginary part high—order parts of
to v imaginary portion of real is 0.0 v, low-order parts

Fortran 77 Language Reference Manual — Chapter 5, Assignment and Data Statements — 2

to v imaginary portion of real is 0.0 v, low-order parts
part ofvis 0.0 part ofv, ofvare 0
imaginary part
ofvis 0.0

Logical Assignment Statements

The logical assignment statement assigns the value of a logical expression to a logical variable or array
element. It takes the form

v= e
where

% is the name of a logical variable or logical array element.
e is a logical expression.

When a logical assignment statement is executed, the value of the logical exgsssiaiuated and
replaces the value of the logical entity to the left of the equal sign. The value of the logical expression is
either true or false.

Character Assignment

The character assignment statement assigns the value of a character expression to a character variable,
array element, or substring. The form of a character assignment statement is

v= e
where

% is the name of a character variable, array element, or substring.
e is a character expression.

During the execution of a character string assignment statement, the character expression is evaluated and
the resultant value replaces the value of the character entity to the left of the equal sign. None of the
character positions being definedvinan be referenced in the evaluation of the expreasion

The entityv and character expressienan have different lengths. If the lengthvaé greater than the
length ofe, then the value afis extended on the right with blank characters to the lengthf diie
length ofeis greater than the lengthwfthen the value afis truncated on the right to the length.of

The following is an example of character assignment:

CHARACTER U*5, V*5, W*7
U = "HELLO’

V = 'THERE’

W(6:7) = V(4:5)

If an assignment is made to a character substring, only the specified character positions are defined. The
definition status of character positions not specified by the substring remain unchanged.

Fortran 77 Language Reference Manual — Chapter 5, Assignment and Data Statements — 3

Aggregate Assignment

An aggregate assignment statement assigns the value of each field of one aggregate to the corresponding
field of another aggregate. The aggregates must be declared with the same structure. The form of an
aggregate assignment statement is

vz e
wherev ande are aggregate references declared with the same structure.

See the "Records" section and "Record and Field References" subsections in Chapter 2, "Constants and
Data Structures," for more information.

ASSIGN

The ASSIGN statement assigns a statement label to an integer variable and is used in conjunction with an
assignedsOTO statement or an I/O statement. The form of a statement label assignment statement is

ASSIGN sTO e

where

S is a statement label of an executable statemenF@RMAT statement that appears
in the same program unit as AESIGN statement.

e is an integer variable name.

A statement label assignment by &@SIGN statement is the only way of defining a variable with a
statement label value. A variable defined with a statement label value may be used only in an assigned
GOTO statement or as a format identifier in an 1/O statement. The variable thus defined must not be
referenced in any other way until it has been reassigned with an arithmetic value.

An integer variable that has been assigned a statement label value can be redefined with the same
statement label, a different statement label, or an arithmetic integer variable.

Examples using th&SSIGN statement are shown below:

Example 1

ASSIGN 100 TO kbranch

GO TO kbranch

Example 2

ASSIGN 999 TO ifmt
999 FORMAT(f10.5)

Fortran 77 Language Reference Manual — Chapter 5, Assignment and Data Statements - 4

READ (*, ifmt) x

WRITE (*, fmt = ifmt) z

Data Initialization

Variables, arrays, array elements, and substrings can be initially defined udd#jithestatement or an
impliedDO list in aDATA statement. ThBLOCK DATA subprogram is a means of initializing
variables and arrays in named common blocks and is discussed in Chapter 4, "Specification Statements."

Entities not initially defined or associated with an initialized entity are undefined at the beginning of the
execution of a program. Uninitialized entities must be defined before they can be referenced in the
program.

Implied—DO Lists

The impliedDO list initializes or assigns initial values to elements of an array.

Syntax

(dlist, i= el e2[, e3)

where

dlist is a list of array element names and impi¥d lists.

i is a name of an integer variable, referred to agripbed—-DO variabldt is used as a
control variable for the iteration count.

el is an integer constant expression specifying an initial value.

e2 is an integer constant expression specifying a limit value.

e3 is an integer constant expression specifying an increment value.

el e2 ande3are as defined DO statements.

Method of Operation

An iteration count and the values of the impli2@ variable are established frat e2 ande3exactly as
for aDO+oop, except that the iteration count must be positive.

When an impliedDO list appears in BATA statement, thdlistitems are specified once for each
iteration of the impliedDO list with the appropriate substitution of values for any occurrence of the
impliedDO variable. The appearance of an impli2@ variable in an implie®O has no effect on the
definition status of that variable name elsewhere in the program unit. For an example of afbi@plied
list, see "DATA" in Chapter 4.

Fortran 77 Language Reference Manual — Chapter 5, Assignment and Data Statements — 5

Therangeof an implieeDO list isdlist.

Rules

* The integer constant expressions useeipe2 ande3can contain implie@DO variables of other
impliedDO lists.

* Any subscript expression in the lifitst must be an integer constant expression. The integer constant
expression can contain impli€&D variables of impliedDO lists that have the subscript expression
within their range.

Chapter 6
Control Statements

This chapter contains the following subsections:

"CALL"

"CONTINUE"

"DO"

"DO WHILE"

"ELSE"

"ELSE IF"

"END"

"END DO"

"END IF"

"GO TO (Unconditional)"
"GO TO (Computed)”
"GO TO (Symbolic Name)"
"IF (Arithmetic)"

"IF (Branch Logical)"

"IF (Test Conditional)"
"PAUSE"

"RETURN"

"STOP"

Control statements affect the normal sequence of execution in a program unit. They are described in
alphabetic order in this chapter and summarized below.

CALL References a subroutine program in a calling program unit.

CONTINUE Has no operational function; usually serves as the terminal statem&® dbap.

DO Specifies a controlled loop, called® loop, and establishes the control variable,
indexing parameters, and range of the loop.

DO WHILE Specifies @O loop based on a test for true of a logical expression.

ELSE Used in conjunction with the blo¢k or ELSE IF statements.

ELSE IF Used optionally with the blodE statement.

END Indicates the end of a program unit.

Fortran 77 Language Reference Manual — Chapter 6, Control Statements — 1

END DO Defines the end of an index&®D loop or aDO WHILE loop.

END IF Has no operational function; serves as a point of reference KNI INUE
statement in ®O loop.

GO TO (Unconditional)
Transfers program control to the statement identified by the statement label.

GO TO (Computed)
Transfers control to one of several statements specified, depending on the value of an
integer expression.

GO TO (Symbolic name)
Used in conjunction with aASSIGN statement to transfer control to the statement
whose label was last assigned to a variable by an assign statement.

IF (Arithmetic) Allows conditional branching.

IF (Branch logical)
Allows conditional statement execution.

IF (Test Conditional)
Allows conditional execution of blocks of code. The bltd€kcan contaifELSE IF
statements for further conditional execution control. The Hieadnds with thé&END

IF.
PAUSE Suspends an executing program.
RETURN Returns control to the referencing program unit. It can appear only in a function or

subroutine program.

STOP Terminates an executing program.

CALL

The CALL statement references a subroutine subprogram in a calling program unit.

Syntax
CALL sulj([a[, a]...])]

where
sub is the symbolic name of the subroutine.
a is an actual argument, an expression, array name, array elements, record elements,

record arrays, record array elements, Hollerith constants, or an alternate return
specifier of the formis, wheresis a statement label, &5 wheresis a statement
label.

Method of Operation

Fortran 77 Language Reference Manual — Chapter 6, Control Statements — 2

A CALL statement evaluates the actual arguments, association of the actual arguments with the
corresponding dummy arguments, and execution of the statements in the subroutine. Return of control
from the referenced subroutine completes the execution 6fAhk statement.

Rules for Use

* The actual argumengsform an argument list and must agree in order, number, and type with the
corresponding dummy arguments in the referenced subroutine.

* A subroutine that has been defined without an argument can be referencdlby atatement of
the following forms:

CALL sub
CALL sulf)

« If a dummy procedure name is specified as a dummy argument in the referenced subroutine, then the
actual argument must be an external procedure name, a dummy procedure name, or one of the
allowed specific intrinsic names. An intrinsic name or an external procedure name used as an actual
argument must appear in BMTRINSIC or EXTERNAL statement, respectively.

« If an asterisk is specified as a dummy argument, an alternate return specifier must be supplied in the
corresponding position in the argument list of@Ad_L statement.

« If a Hollerith constant is used as an actual argumenCiAld. statement, the corresponding dummy
argument must not be a dummy array and must be of arithmetic or logical data type. This rule is an
exception to the first rule above.

e A subroutine can call itself directly or indirectly (recursion).

Note: Recursion is an extension to Fortran 77. Fortran 77 does not allow a subroutine to reference itself.

Example

In the following example, the main routine c&iSGEREAD, passing the parametérd/ ORDCOUNT
, PAGE, andNSWITCH . After execution oPAGEREAD, control returns to the main program, which
stops.

program Makelndex
character*50 page
dimension page (100)
nswitch =0
111 Iwordcount = inwords1*2
call pageread (lwordcount,page,nswitch)
stop
*
subroutine pageread (lwordcount,page,nswitch)
character*50 page
dimension page (100)

Fortran 77 Language Reference Manual — Chapter 6, Control Statements — 3

icount = 100

end

CONTINUE

The CONTINUE statement has no operational function. It usually serves as the terminal statement of a
DO loop.

Syntax
CONTINUE

Method of Operation

When aCONTINUE statement that close®® loop is reached, control transfer depends on the control
variable in thédO loop. In this case, control will either go back to the start obtBdoop, or flow

through to the statement following tBONTINUE statement. (See Item 3, "Loop Control Processing,"
in "DO" for full information about control dPO loops.)

Example

In the following example, thBO loop is executed 100 times, and then the program branches to statement
50 (not shown).

iwordcount = 100
do 25, i= 1,lwordcount
read (2, 20, end=45) word
20 format (A50)
25 Continue

*

goto 50

DO

TheDO statement specifies a controlled loop, call&aloop, and establishes the control variable,
indexing parameters, and range of the loop.

Syntax

DO[9[] i= el e2[, €3

where

S is a statement label of the last executable statement in the rangBOfltap. This

Fortran 77 Language Reference Manual — Chapter 6, Control Statements — 4

statement is called the terminal statement oDiddoop.scan be omitted. Kis
omitted, the loop must be terminated withED DO statement. On completion of
the loop, execution resumes with the first statement followingii2 DO
statement.

i is a name of an integer, real, or double—precision variable, cal@® treriable.

el is an integer, real, or double—precision expression that represents the initial value
given to théDO variable.

e2 is an integer, real, or double—precision expression that represents the limit value for
theDO variable.

e3 is an integer, real, or double—precision expression that represents the increment value
for theDO variable.

Method of Operation

The range of ®O loop consists of all executable statements following the statement, up to and including
the terminal statement of tB¥ loop. In aDO loop, the executable statements that appear DG@he

loop range are executed a number of times as determined by the control parameters specliéd in the
statement.

The execution of ®0 loop involves the following steps:

1. Activating the DO loop. TheDO loop is activated when tH2O statement is executed. The initial
parameteml, the terminal parameten2, and the incremental paramate3are established by
evaluating the expressior§ e2 ande3 respectively. The expressions are converted to the type of
theDO variable when the data types are not the sameDTheariable becomes defined with the
value of the initial parametenl The incremenmn3cannot have a value of zero and defaults to the
value 1 ife3is omitted.

2. Computing the iteration count. The iteration count is established from the following expression:
MAX(INT((m2- ml+ m3/ m3,0)
The iteration count is zero in the following cases:

ml> m2 and m3>0
ml<< m2 and m3=0

If the initial value (n1) of theDO exceeds the limit valuen@, as in
DO101=2,1

theDO loop will not be executed unless thenetrip compiler option is in effect. This option causes
the body of a loop thus initialized to be executed once.

Ordinarily, on encountering@ —loop whose upper or lower limit has already been reached, the
compiler—generated code skips the loop. This action conforms with Fortran standards.

To make Fortran 77 compatible with Fortran 66, the compiler allows you to generate code that
performs a loop at least once, regardless of whether the upper or lower limit has already been

Fortran 77 Language Reference Manual — Chapter 6, Control Statements — 5

reached. This is accomplished by specifyingtheetrip option as described in Chapter 1 of the
Fortran 77 Programmer’s Guidd his option is included for older programs written under the
assumption that all loops would be performed at least once.

3. Loop control processingThis step determines if further execution of the range dd@éoop is
required. Loop processing begins by testing the iteration count. If the iteration count is positive, the
first statement in the range of th® loop is executed. Normal execution proceeds until the terminal
statement is processed. This constitutes one iteration of the loop. Incrementing is then required,
unless execution of the terminal statement results in a transfer of control.

If the iteration count is zero, ti¥O loop becomes inactive. Execution continues with the first
executable statement following the terminal statement d@éop. If severaDO loops share the
same terminal statement, incremental processing is continued for the immediately cobtaining
loop.

4. Incremental processingThe value of th®O variable is incremented by the value of the
incremental parameten3 The iteration count is then decreased by one, and execution continues
with loop control processing as described above.

A DO loop is either active or inactive.®O loop is initially activated when if8O statement is
executed. Once activeP#® loop becomes inactive when one of the following occurs:

¢ The iteration count is zero.
« A RETURN statement within thBO loop range is executed.

« Control is transferred to a statement outside the range BiQHeop but in the same program
unit as thédO loop.

A STOP statement is executed or the program is abnormally terminated.

Reference to a subprogram from within the range obthdoop does not make ti¥O loop
inactive except when control is returned to a statement outside the rang®of linap.

When aDO loop becomes inactive, ti¥O variable of thé®O loop retains its last defined value.

Rules for Use
* You can nesbO loops but do not overlap them.

» If aDO statement appears within Bnblock,ELSE IF block, orELSE block, the range of tHeO
loop must be contained within that block.

« If a blocklF statement appears within the range bGaloop, the correspondirgND IF statement
must appear within the range of h® loop.

* The same statement can serve as the terminal statement in two or mor® Qdsimok.
Restrictions

« Do not use the following statements for the statement labeled sOirQthaop:

Fortran 77 Language Reference Manual — Chapter 6, Control Statements — 6

UnconditionalGO TO END IF

AssignedGO TO RETURN
ArithmeticlF STOP

Block IF END

ELSE IF AnotherDO statement
ELSE

« If the statement labeled s is a logitfialstatement, it can contain any executable statement in its
statement body, except the following:

DO statement END IF

BlocKF END

ELSE IF Another logicalF statement
ELSE

» Except by the incremental process covered abov&@heariable must not be redefined during the
execution of the range of tixO loop.

e A program must not transfer control into the range B€ealoop from outside thBO loop. When
this happens, the result is indeterminate.

* When theDO variable is a floating—point variable, especially if the loop increment @atanot
be represented exactly in floating—point form, the number of times the loop executes could be off by
one due to floating—point arithmetic error.

Example
DO 10,i=1, 10
D
D
D
10 CONTINUE
E

In the above example, the statements noted witlicdlowing theDO statement are executed
sequentially ten times, then execution resumes at the statérfiodiotving CONTINUE.

DO WHILE

TheDO WHILE statement specifies a controlled loop, call&aloop, based on a test for true of a
logical expression.

Syntax
DO [4,]] WHILE (e

where

Fortran 77 Language Reference Manual — Chapter 6, Control Statements — 7

S is a statement label of the last executable statement in the rangBOfltap. This
statement is called the terminal statement oDiddoop.

e is a logical expression.

If s is omitted, the loop must be terminated wittE&D DO statement.

Method of Operation

TheDO WHILE statement tests the specified expression before each iteration (including the first
iteration) of the statements within the loop. When the logical expression e is found to be true, execution
resumes at the statement specified by the Rlfedis omitted, execution resumes at the first statement
following theEND DO statement.

ELSE

Use theELSE statement in conjunction with the blogk or ELSE IF statements.

Syntax
ELSE

Method of Operation

An ELSE block is the code that is executed wherEBBE statement is reached. &b SE block begins
after theELSE statement and ends before BidD IF statement at the sartelevel as th&LSE
statement. (For details about the téfntevel, refer to "IF (Test Conditional)".) As well as containing
simple, executable statements FISE block can be empty (contain no statements) or can contain
embedded block IF statements. Do not confus&H&E block with theELSE statement.

An ELSE statement is executed when the logical expressions in the correspondinigr dodELSE |F
statements evaluate to false. BIbSE statement does not evaluate a logical expressioELtBE block
is always executed if tHeL SE statement is reached. After the last statement iEtSE block is
executed (and provided it does not transfer control), control flows ENBelF statement that closes
that wholdF level.

Rules for Use
* Do not speciffELSE IF or ELSE statements inside &1 SE block at the sami& level.

« ThelF level of theELSE statement must be greater than zero; that is, there must be a preceding
corresponding block statement.

Restrictions

< Enter arELSE block only by executing thELSE statement. Do not transfer control into EieSE
block from the outside.

< If an ELSE statement has a statement label, the label cannot be referenced by any statement.

Fortran 77 Language Reference Manual — Chapter 6, Control Statements — 8

Example
The following example shows &1 SE block.

IF (R) THEN
A=0

ELSE IF (Q) THEN
A=1

ELSE
A=-1

END IF

ELSE IF

TheELSE IF statement is used optionally with tfteblock statement.

Syntax
ELSEIF(€ THEN

whereeis a logical expression.

Method of Operation

Two terms need to be defined to explainEh&SE IF statementELSE IF block (defined below) anidF
level (defined in "IF (Branch Logical)").

An ELSE IF block is the code that is executed when the logical expressiorEbfsh|F statement is

true. ANELSE IF block begins after thELSE IF statement and ends before the ieb&E IF, ELSE,

orEND IF statement at the sartelevel as th&€LSE IF statement. As well as containing simple,
executable statements, BbSE IF block can be empty (contain no statements) or can contain embedded
blockIF statements. Do not confuse tESE IF block with theELSE IF statement.

When arELSE IF statement is reached, the logical expressismevaluated. I€is true, execution
continues with the first statement in t8eSE IF block. If theELSE IF block is empty, control is passed
to the nexEND IF statement that has the saliRdevel as th&LSE IF statement. I¢is false, program
control is transferred to the neéxt SE IF, ELSE, orEND IF statement that has the saliRdevel as the
ELSE IF statement.

After the last statement of tii# SE IF block is executed (and provided it does not transfer control),
control is automatically transferred to the neEXID IF statement at the sartelevel as th&€LSE IF
statement.

Rule for Use

ThelF level of theELSE IF statement must be greater than zero (there must be a preceding
corresponding block statement).

Fortran 77 Language Reference Manual — Chapter 6, Control Statements — 9

Restrictions
* Do not transfer control into &1L_SE | block from outside thELSE IF block.

* No statement can reference the statement label (if any)Eif &R IF statement. The only way to
reach arELSE IF statement is through itB block statement.

Example
The following example shows &1 SE IF block.

IF(R) THEN
A=0

ELSE IF (Q) THEN
A=1

END IF

END

The END statement designates the end of a program unit.

Syntax
END

Method of Operation

An END statement in a main program has the same effecBa®©® statement: it terminates an
executing program.

An END statement in a function or subroutine subprogram has the effeREOFlARN statement: it
returns control to the referencing program unit.

Rules for Use
* AnEND statement cannot be the last statement in every program unit.

* Do not continue aBND statement.

END DO

The END DO statement defines the end of a indeR€dlloop or aDO WHILE loop.

Syntax
END DO

END IF

Fortran 77 Language Reference Manual — Chapter 6, Control Statements — 10

TheEND IF statement has no operational function. It serves as a point of referenceQikd lNUE
statement in ®O loop.

Syntax
END IF

Rules for Use

« Every blocklF statement requires &ND IF statement to close thik level. (F level is described
in "IF (Test Conditional)").

« ThelF level of anEND IF statement must be greater than zero (there must be a preceding
correspondingf block statement).

Example

See the example given with the description of8h&E statement in "ELSE".

GO TO (Unconditional)

The unconditionalO TO statement transfers program control to the statement identified by the
statement label.

Syntax
GO TO s

wheresis a statement label of an executable statement appearing in the same program unit as the
unconditionalGO TO.

Example

The following statement transfers program control to statement 358 and normal sequential execution
continues from there.

GO TO 358

GO TO (Computed)

The compute@O TO statement transfers control to one of several statements specified, depending on
the value of an integer expression.

Syntax
GOTO (9, 4..)0] i

where

S is a statement number of an executable statement appearing in the same program unit
as the compute@O TO.

Fortran 77 Language Reference Manual — Chapter 6, Control Statements — 11

i is an integer.

A noninteger expression can also be used fdon—integer expressions are converted to integers
(fractional portions are discarded) before being used to index the list of statement labels.

Method of Operation

A computedsO TO statement evaluates the integer expression and then transfers program control to the
specified statement

In the computeO TO statement with the following form
GOTO (sl s2.., sn, i

if i<1 ori>n, the program control continues with the next statement following the contpOtded
statement; otherwise, program control is passed to the statement KbEhed, if the value of the
integer expression is 1, control of the program is transferred to the statement nighietieel list; if the
value of the expression is 2, control is passed to the statement nustiarte list, and so on.

Rule for Use

The same statement label can appear more than once in the same c@fplitedtatement.

Example

In the following example, the fifth list item is chosen bec&#AL + 1 = 5. Program control is
transferred to the statement labeled 350.

KVAL =4
GO T0O(100,200,300,300,350,9000)KVAL + 1

GO TO (Symbolic Name)

Use the symboliGO TO statement in conjunction with &8SIGN statement to transfer control to the
statement whose label was last assigned to a variableAyGN statement.

Syntax
GOTOI[[J(s[9.

wherei is an integer variable name agid a statement label of an executable statement appearing in the
same program unit as the assig@€l TO statement.

Method of Operation

The variable is defined with a statement label using &#SIGN statement in the same program unit as
the assigne@O TO statement. When an assign@® TO is executed, control is passed to the statement
identified by that statement label. Normal execution then proceeds from that point.

Fortran 77 Language Reference Manual — Chapter 6, Control Statements — 12

Rules for Use
e The same statement label can appear more than once in the same &Q3igit@dtatement.

e Ifalistin parentheses is present, the statement label assignadsbbe one of those in the list.

Example
GO TO KJUMP,(100,500,72530)

The value oKJUMP must be one of the statement label values: 100, 500, or 72530.

IF (Arithmetic)

The arithmetidF statement allows conditional branching.

Syntax
IF(& sl s2 s3

where
e is an arithmetic expression of type integer, real, or double—precision but not complex.
s1,s2s3 are numbers of executable statements in the same program unit as the aifthmetic

statement.

Method of Operation

In the execution of an arithmetie statement, the value of the arithmetic expressisrevaluated.

Control is then transferred to the statement numbetex®, ors3if the value of the expression is less than
zero, equal to zero, or greater than zero, respectively. Normal program execution proceeds from that
point.

Rules for Use

You can use the same statement number more than once in the same alEhstetisanent.

Example

Consider the following statement:

IF (A + B*(.5))500,1000,1500

If the expressio’\ + B*(.5) is

* less than zero, control jumps to statement 500
e equal to zero, control jumps to statement 1000

« greater than zero, control jumps to statement 1500

Fortran 77 Language Reference Manual — Chapter 6, Control Statements — 13

IF (Branch Logical)

The branch logicdF statement allows conditional statement execution.

Syntax

IF(¢ st

where

e is a logical expression.

st is any executable statement exdef, blocklF, ELSE IF, ELSE, END IF, END, or

another logicalF statement.

Method of Operation

A logical IF statement causes a Boolean evaluation of the logical expression. If the value of the logical
expression is true, statemshis executed. If the value of the expression is false, execution continues
with the next sequential statement following the lodiEastatement.

Note that a function reference in the expression is allowed but might affect entities in the statement

Example
The following examples show branch logitfalstatements.

IF(A .LE. B) A= 0.0
IF (M .LT. TOC) GOTO 1000
IF (J) CALL OUTSIDE(B,Z,F)

IF (Test Conditional)

The test conditiondF statement allows the conditional execution of blocks of code. ThelBlaan
containELSE andELSE IF statements for further conditional execution control. The B®&nds with
theEND IF statement.

Syntax
IF(€ THEN

whereeis a logical expression.

Method of Operation

AnIF block is the code that is executed when the logical expression of dbletkement evaluates to
true. AnlF block begins after the blodk statement and ends before BIeSE IF, ELSE, orEND IF
statement that corresponds to the blécktatement. As well as containing simple, executable
statements, alr block can be empty (contain no statements) or can contain embeddekFblock
statements. Do not confuse the téFmblock with blockF.

Block IF statements anflLSE IF statements can be embedded, which can make figuring out which

Fortran 77 Language Reference Manual — Chapter 6, Control Statements — 14

statements are in which conditional blocks confusing.IFFHevel of a statement determines which
statements belong to whith—-THEN-ELSEblock. Fortunately, th&= level of a statement can be found
systematically. Th& level of a statement is

(n1- n2

where (starting the count at the beginning of the program afit}:the number of blodE statements
up to and including andn2is the number dEND IF statements up to bobtincludings

ThelF level of every blochkF, ELSE IF, ELSE, andEND IF statement must be positive because those
statements must be part of a bldEkstatement. Thié= level of theEND statement of the program unit
must be zero because all bldEkstatements must be properly closed. TFhéevel of all other statements
must either be zero (if they are outsidelRlblocks) or positive (if they are inside hablock).

When a blockF statement is reached, the logical expressisrevaluated. l&is true, execution
continues with the first statement in tikeblock. If thelF block is empty, control is passed to the next
END IF statement that has the salfrdevel as the block= statement. I&is false, program control is
transferred to the neldL.SE IF, ELSE, orEND IF statement that has the saliRdevel as the block
statement.

After the last statement of thié block is executed (and provided it does not transfer control), control is
automatically transferred to the n&{ID IF statement at the sartelevel as the block statement.

Restriction

Control cannot be transferred intol&nblock from outside th# block.

Example
The following example shows a test conditioiffablock.

IF(Q .LE. R) THEN

PRINT ('Q IS LESS THAN OR EQUAL TO R)
ELSE

PRINT ('Q IS GREATER THAN R’)
END IF

PAUSE

The PAUSE statement suspends an executing program.

Syntax
PAUSE [n]

wheren is a string of not more than five digits or a character constant.

Method of Operation

A PAUSE statement without amspecification suspends execution of a program and issues the following

Fortran 77 Language Reference Manual — Chapter 6, Control Statements — 15

message:
PAUSE statement executed
To resume execution, type go. Any other inputwill terminate job.

A PAUSE statement with an specification displays the specified character constant or digits and issues
the pause message. For example, the following statement

PAUSE "Console Check"

results in the following message being displayed:

PAUSE Console Check statement executed

To resume execution, type go. Any other inputwill terminate job.

If execution is resumed, the execution proceeds as thdOGINGINUE statement were in effect.

At the time of program suspension, the optional digit string or character constant becomes accessible to
the system as program suspension status information.

RETURN

TheRETURN statement returns control to the referencing program unit. It can appear only in a function
or subroutine subprogram.

Syntax

In a function subprogram

RETURN

In a subroutine subprogram

RETURN [€

whereeis an integer expression specifying an alternate return.

A noninteger expression can be usedefdtoninteger expressions are converted to integer, and the
fractional portions discarded, before control is returned to the alternate return argument.

Method of Operation

A RETURN statement terminates the reference of a function or subroutine and transfers control back to
the currently referenced program unit. In a function subprogram, the value of the function then becomes
available to the referencing unit. In a subroutine, return of control to the referencing program unit
completes execution of tiBALL statement.

A RETURN statement terminates the association between the dummy arguments of the external
procedure and the current actual arguments.

In a subroutine subprogram, if e is not specified RETURN statement or if the value efs less than
or greater than the number of asterisks iITRUBROUTINE or ENTRY statement specifying the

Fortran 77 Language Reference Manual — Chapter 6, Control Statements — 16

currently referenced name, then control returns t€id. statement that initiated the subprogram.
Otherwise, the value of e identifies ik asterisk in the dummy argument list of the currently referenced
name. Control returns to the statement identified by the alternate return specifi@Ahthstatement

that is associated with tleth asterisk in the dummy argument list.

The execution of RETURN statement causes all entities in an external procedure to become undefined
except for entities that are

» specified in &SAVE statement
* blank
» specified in a named common.

« Jnitialized in aDATA statement that has neither been redefined nor become undefined

STOP

The STOP statement terminates an executing program.

Syntax
STOP [n]

wheren is a string of not more than five digits or a character constant.

Method of Operation

The STOP statement terminates an executing programidfspecified, the digit string or character
constant becomes accessible to the system as program termination status information.

Chapter 7
Input/Output Processing

This chapter contains the following subsections:

* "Records"

* "l/O Statements"

* "Files"

* "Methods of File Access"

e "Units"

Input statements copy data from external media or from an internal file to internal storage. This process is

calledreading Output statements copy data from internal storage to external media or to an internal file.
This process is callaalriting.

The Fortran input/output (1/O) facilities give you control over the 1/0O system. This section deals primarily
with the programmer-related aspects of /O processing, rather than with the implementation of the
processor—dependent 1/O specifications.

See Chapter 1 of tHeortran 77 Programmer’s Guidtr information on extensions to Fortran 77 that
affect 1/0O processing.

Records

A recordis simply a sequence of values or characters. Fortran has three kinds of records:
» formatted

e unformatted

+ endfile

A recordis a logical concept; it does not have to correspond to a particular physical storage form.
However, external media limitations can also limit the allowable length of records.

Formatted Records

A formatted recorccontains only ASCII characters and is terminated by a carriage-return or line-feed
character. Formatted records are required only when the data must be read from the screen or a printer

copy.

A formatted record can be read from or written to only by formatted 1/0 statements. Formatted records are
measured in characters. The length is primarily a function of the number of characters that were written
into the record when it was created, but it may be limited by the storage media or the CPU. A formatted
record may have a length of zero.

Unformatted Records

Fortran 77 Language Reference Manual — Chapter 7, Input/Output Processing — 1

Unformatted recordsontain sequences of values; both character and noncharacter are not terminated by
any special character and cannot be accurately comprehended in their printed or displayed format.
Generally, unformatted records use less space than formatted records and thus conserve storage space.

An unformatted record can be read from or written to only by unformatted I/O statements. Unformatted
records are measured in bytes. That length is primarily a function of the output list used to write the
record but may be limited by the external storage media or the CPU. An unformatted record can be
empty.

Endfile Records

An endfile recordmarks the logical end of a data file. Thus, it can only be the last record of a file. An
endfile record does not contain data and has no length. An endfile record is writtdeNIyFAhE
statement.

When a program is compiled wittvms_endfile an endfile record consists of a single character, Control

D. In this case, several endfile records can exist in the same file and can be anywhere in the file. Reading
an endfile record will result in an end-of-file condition being returned, but rereading the same file will
read the next record, if any.

I/O Statements

The I/O statements that Fortran uses to transfer data can be categorized by how the data translated during
the transfer, namely, &srmattedlist—directedandunformatted 1/O

Unformatted Statements

An unformatted I/O statement transfers data in the noncharacter format during an I/O operation.
Unformatted I/O operations are usually faster than formatted operations, which translate data into
character format.

In processing formatted statements, the system interprets some characters, for example, the line-feed
character, as special controls and eliminates them from input records. Therefore, unformatted statements
must be used wheall characters in a record are required.

The absence of a format specifier denotes an unformatted data transfer statement, as shown by the
WRITE statement in the following example:

program Makelndex
character*12 word
open (2, file="v’,form="formatted’)
open (unit=10, status="new’, file="newv.out",
+ form="unformatted’)
116 read (2,666, end=45) word
write (10) word
goto 116
45 close (10)
end

Fortran 77 Language Reference Manual — Chapter 7, Input/Output Processing — 2

In the above example, formatted records are read into the vasiatdérom the input file attached to
unit 2 and then written unformatted to the output file attached to unit 10.

Formatted Statements

A formatted I/Ostatement translates all data to character format during a record transfer. The statement
contains dormat specifiethat referencesORMAT statement; thEORMAT statement contains

descriptors that determine data translation and perform other editing functions. Here is an example of two
formattedWRITE statements:

program makeindex
character*18 message
message = 'Hello world’
write (6,100) message
write (6,100) "hello world’
100 format (a)
end

Note that both statements contain the format specifier 100, which references a format statemefit with an
character descriptor. (Chapter 9, "Format Specification," describes the descriptors in detail.) Both
statements perform the same function, namely, writing the following message to the unit 6 device:

HELLO WORLD

List—Directed Statements

An I/O statement ilist directedwhen an asterisk is used in place of a format specifier. A list—directed 1/0
statement performs the same function as a formatted statement. However, in translating data, a
list—directed statement uses the declared data type rather than format descriptors in determining the
format.

The following two list-directed/RITE statements perform the same function as the formatRITE
statements in the example for formatted output above.

program makeindex
character*18 message
message = hello world’
write (6,*) message
write (6,*) 'hello world’
end

In this example, the variabieessage the firstWRITE statement determines that output is in character
format; the character constaello World in the second statement makes this determination.

Files

A file is a sequence of records. The processor determines the set of files that exists for each executable
program. The set of existing files can vary while the program executes. Files that are known to the

Fortran 77 Language Reference Manual — Chapter 7, Input/Output Processing — 3

operating system do not necessarily exist for an executable program at a given time. A file can exist and
contain no records (all files are empty when they are created). 1/0O statements can be applied only to files
that exist.

Files that have names are caltegned filesNames are simply character strings.

Every data file has a position. The position is used by I/O statements to tell which record to access and is
changed when I/O statements are executed.

The terms used to describe the position of a file are
Initial point The point immediately before the first record.
Terminal point ~ The point immediately after the last record.

Currentrecord The record containing the point where the file is positioned. There is no current
record if the file is positioned at the initial point (before all records) or at the terminal
point (after all records) or between two records.

Preceding record
The record immediately before the current record. If the file is positioned between
two records (so there is no current record), the preceding record is the record before
the file position. The preceding record is undefined if the file is positioned in the first
record or at the initial point.

Next record The record immediately after the current record. If the file is positioned between two
records (so there is no current record), the next record is the record after the file
position. The next record is undefined if the file position is positioned in the last
record or at the terminal point.

This section discusses the two kinds of files: internal files and external files.

External Files

An external fileis a set of records on an external storage medium (for example, a disk or a tape drive). A
file can be empty, which means it can contain zero records.

Internal Files

Aninternal fileis a means of transferring data within internal storage between character variables,
character arrays, character array elements, or substrings.

An internal file is always positioned at the beginning of the first record before data transfer. Records are
read from and written to by sequential access of formatted I/O statements only.

The following simple example shows how to use an internal file transfer to convert character and integer
data.

program conversion
character*4 CharRep
integer NumericalRep

Fortran 77 Language Reference Manual — Chapter 7, Input/Output Processing — 4

NumericalRep = 10
C
C examplel
C
write (CharRep, 900) NumericalRep
900 format (i2)
CharRep =222’
C
C example 2
C
read (CharRep, 999) NumericalRep
999 format (i3)
end

In the first example, the contentsNdimericalRep are converted to character format and placed in
CharRep. In the second example, the content€b&rRep are converted to integer format and placed in
NumericalRep.

Methods of File Access
The following methods of file access are supported:

e sequential

o direct

e keyed

External files can be accessed using any of the above methods. The access method is determined when
the file is opened or defined.

Fortran 77 requires that internal files must be accessed sequentially.

As an extension, the use of internal files in both formatted and unformatted I/O operations is permitted.

Sequential Access
A file connected fosequential accedsas the following properties:

« For files that allow only sequential access, the order of the records is simply the order in which they
were written.

« For files that also allow direct access, the order of files depends on the record number. If a file is
written sequentially, the first record written is record number 1 for direct access, the second written is
record number 2, and so on.

+ Formatted and unformatted records cannot be mixed within a file.
* The last record of the file can be an endfile record.

* The records of a pure sequential file must not be read or written by direct-access 1/O statements.

Fortran 77 Language Reference Manual — Chapter 7, Input/Output Processing — 5

Direct Access
A file connected fodirect accesbas the following properties:

* A uniquerecord numbeis associated with each record in a direct—access file. Record numbers are
positive integers that are attached when the record is written. Records are ordered by their record
numbers.

* Formatted and unformatted records cannot be mixed in a file.

« The file must not contain an endfile record if it is direct access only. If the file also allows sequential
access, an endfile record is permitted but will be ignored while the file is connected for direct access.

« All records of the file have the same length. When the record length of a direct-formatted file is one
byte, the system treats the files as ordinary system files, that is, as byte strings in which each byte is
addressable. READ or WRITE request on such files consumes/produces bytes until satisfied,
rather than restricting itself to a single record. Note that to produce a record length of one byte, the
program must be compiled with theld_rl option.

< Only direct-access I/O statements can be used for reading and writing records. An exception is made
when sequential I/O statements are used on a direct-unformatted file, in which case the next record is
assumed. List—directed formatting is not permitted on direct—access files.

« The record number cannot be changed once it is specified. A record can be rewritten, but it cannot be
deleted.

* Records can be read or written in any order.

Keyed Access
A file connected fokeyed accedsas the following properties:
< Only files having an indexed organization can be processed using the keyed—access method.

* A unique character or integer value callddegis associated with one or more fields in each record
of the indexed access file. The fields are defined when the file is created WiEAstatement.
EachREAD statement contains a key to locate the desired record in the indexed file.

* You can intermix keyed access and sequential access on the same opened file.

Units

Files are accessed througits A unit is simply the logical means for accessing a file. The file—unit
relationship is strictly one to one: files cannot be connected to more than one unit and vice versa. Each
program has a processor—dependent set of existing units. A unit has two states: connected and
disconnected.

Connection of a Unit

A connected unitefers to a data file. A unit can be connected implicitly by the processor or explicitly by

Fortran 77 Language Reference Manual — Chapter 7, Input/Output Processing — 6

anOPEN statement. If a unit is connected to a file, the file is connected to the unit. However, a file can be
connected and not exist. Consider, for example, a unit preconnected to a neyprideornected unis

already connected at the time the program execution begins. See the section on preconnected files in
Chapter 1 of th&ortran 77 Programmer’s Guider these default connections.

Disconnection of a Unit

A unit can balisconnectedrom a file by aCL OSE statement specifying that particular unit.

Chapter 8
Input/Output Statements

This chapter contains the following subsections:
e "Statement Summary"
« "ACCEPT"
« "BACKSPACE"
e "CLOSE"
« "DECODE"

* "DEFINE FILE"

.+ "DELETE"

-« "ENCODE"
.+ "ENDFILE"
« "FIND"

+ "INQUIRE"
.« "OPEN"

* "PRINT or TYPE"
+ "READ (Direct Access)"
* "READ (Indexed)"
* "READ (Internal)"

* "READ (Sequential)"

« "REWIND"
« "REWRITE"
* "UNLOCK"

* "WRITE (Direct Access)"

« "WRITE (Indexed)"

* "WRITE (Internal)"

 "WRITE (Sequential)"

* "Control Information List] cilist"
e "Input/Output List] iolist"

+ "Data Transfer Rules"

Fortran 77 Language Reference Manual — Chapter 8, Input/Output Statements — 1

This chapter describes the statements that control the transfer of data within internal storage and between
internal and external storage devices. It provides an overview of the Fortran I/O statements and gives
syntax, rules, and examples for each.

This chapter also describes general rules that apply to data transfer statements.

Statement Summary
The I/O statements described in this chapter are grouped into the following classes:

< Data transfer statements, which transfer information between two areas of internal storage or
between internal storage and an external file. The seven types are

- READ

- DELETE

- UNLOCK

- ACCEPT

- WRITE

- REWRITE

— PRINT orTYPE

« Auxiliary statements, which explicitly open or close a file, provide current status information about a
file or unit or write an endfile record. The four types are

- OPEN

CLOSE

INQUIRE

ENDFILE

» File positioning statements, which position data files to the previous record or to the initial point of a
file. These statements apply only to external files. They are

- BACKSPACE
- REWIND

« Statements that provide compatibility with earlier versions of Fortran. They are included to permit
the older Fortran programs to be compiled and exist on the same system as standard Fortran 77
programs. The statements include the following:

- ENCODE
- DECODE
— DEFINE FILE

- FIND

Fortran 77 Language Reference Manual — Chapter 8, Input/Output Statements - 2

The following sections describe the statements in the above summary in detail.

ACCEPT

The ACCEPT statement transfers data from the standard input unit to the items specified by the input list.

Syntax

ACCEPTf[, iolist]

where
f is the format specifier
iolist is an optional output list specifying where the data is to be stored.

See "Control Information Lidil cilist” and "Input/Output List] iolist" for a description of théand
iolist parameters.

Rules for Use

The ACCEPT statement specifies formatted input from the file associated with the system input unit; it
cannot be connected to a user—specified input unit.

See "Data Transfer Rules" for additional rules.

Example
The following code transfers character data from the standard input unit into

ACCEPT 3,x
3 FORMAT (A)

BACKSPACE

The BACKSPACE statement positions a data file before the preceding record. It can be used with both
formatted and unformatted data files.

Syntax

BACKSPACEuU
BACKSPACE (@list)

where
u is an external unit identifier.

alist is a list of the following specifiers:

[UNIT =] u is a required unit specifian.must be an integer expression that identifies the
number of an external unit. If the keywdtllIT = is omitted, them must be the
first specifier imalist.

Fortran 77 Language Reference Manual — Chapter 8, Input/Output Statements — 3

IOSTAT =ios is an I/O statuspecifierthat specifies the variable to be defined with a status
value by thdBACKSPACE statement. A zero value faisdenotes a no error
condition, while a positive integer value denotes an error condition.

ERR =s is an error specifier that identifies a statement number to which control is
transferred when an error condition occurs during the execution of the
BACKSPACE statement.

Note: An error message is issued if this statement references a file opened with an
ACCESS="KEYED" , ACCESS="APPEND", or aFORM="SYSTEM" specification.

Method of Operation

The unit specifier is required and must appear exactly once. The other specifiers are optional and can
appear at most once each in #tist. Specifiers can appear in any order. For information about
exceptions refer to "Unit Specifier UNIT".

The BACKSPACE statement positions the file on the preceding record. If there is no preceding record,
the position of the file is unchanged. If the preceding record is an endfile record, the file is positioned
before the endfile record.

Examples

BACKSPACE M
BACKSPACE (6, IOSTAT=LP, ERR=998)

CLOSE

The CLOSE statement disconnects a particular file from a unit.

Syntax
CLOSE (cilist)

wherecilist is a list of the following specifiers:

[UNIT =] u is a required unit specifiew.must be an integer expression that identifies the number
of an external unit. If the keywokdNIT= isomitted, theru must be the first specifier
in cilist.
IOSTAT=ios is an I/O status specifier that specifies the variable to be defined with a status value by

theCLOSE statement. A zero value fars denotes a no error condition while a
positive integer value denotes an error condition.

DISP[OSE]=disposition
Provides the same function as the like parameters DN statement. The

dispositionparameters in the fileGLOSE statement override the disposition
parameters in itOPEN statement.

ERR=s is an error specifier that identifies a statement number to which control is to be

Fortran 77 Language Reference Manual — Chapter 8, Input/Output Statements — 4

transferred when an error condition occurs during execution GLRESE
statement.

STATUS=std is a file status specifiestais a character expression that, when any trailing blanks are
removed, has a value WEEP or DELETE. The status specifier determines the
disposition of the file that is connected to the specified KREP specifies that the
file is to be retained after the unit is closB&ELETE specifies that the file is to be
deleted after the unit is closed. If a file has been open&IfBATCH in anOPEN
statement, theKEEP must not be specified in tl& OSE statement. liolist
contains no file status specifier, the default valu€E&P, except when the file has
been opened f@CRATCH, in which case the default BELETE.

Method of Operation

At the normal termination of an executable program, all units that are connected are closed. Each unit is
closed with statuKEEP unless the file has been openedSG@RATCH in anOPEN statement. In the
latter case, the unit is closed as if with file stadiEd ETE.

A CLOSE statement need not occur in the same program unit in which the file was op&@i€aSE
statement that specifies a unit that does not exist or has no file connected to it does not affect any file, and
is permitted.

A unit that is disconnected byCGA OSE statement can be reconnected within the same executable
program, either to the same file or to a different file. A file that is disconnected can be reconnected to the
same unit or a different unit, provided that the file still exists.

Examples

CLOSE(UNIT=1,STATUS='KEEP’)
CLOSE(UNIT=K,ERR=19,STATUS="DELETE’)

DECODE

The DECODE statement transfers data between internal files, decoding the transferred data from
character format to internal format.

Note: This statement provides primarily the same function aRE#AD statement using internal files,

except that the input is read from a numeric scalar or array rather than a character string. This release does
not support the concept of multiple records, and you must specify the record length. Where possible, use a
READ statement instead BECODE in new programs to make them compatible with different Fortran

77 operating environments.

Syntax
DECODE (n, f, targef,ERR= q[,IOSTAT= rn])[iolist]
where

n is an integer expression specifying the number of characters to be translated to

Fortran 77 Language Reference Manual — Chapter 8, Input/Output Statements — 5

internal format.
f is a format specifier (as described in "Format SpedififFMT" in this chapter).

target is a scalar reference or array indicating the destination of the characters after
translation to external form.

ERR=s See "Control Information Lidil cilist" in this chapter for an explanation of this
parameter.

IOSTAT=rn See "Control Information Lidil cilist" in this chapter for an explanation of this
parameter.

iolist is an optional list specifying the source data, as described in "Input/Outptit List

iolist" of this chapter.

Method of Operation
« The relationship between the 1/O list and the format specifier is the same as for formatted 1/0.

e The maximum number of characters transmitted is the maximum number possibl¢diayetuata
type. Iftargetis an array, the elements are processed in subscript order.

DEFINE FILE

TheDEFINE FILE statement defines the size and structure of a relative file and connects it to a unit. It
primarily provides the same function as the For@&EN statement specifyilgCCESS="DIRECT".

Syntax

DEFINE FILE u(reccountreclen U, asva)[, u(reccountreclen U, asval]

where

u is an integer expression that identifies the number of an external unit that contains the
file.

reccount is an integer expression defining the number of records in the file.

reclen is an integer expression specifying in word (two byte) units the length of each record.

U specifies an unformatted (binary) filg is always required and always in the same
position, as shown in the above syntax.

asvar is an associated integer variable indicating the next higher numbered record to be read

or written. It is updated after each direct-access I/O operation.

Method of Operation

Only unformatted files can be opened withEBFINE FILE statement. The file defined byis assumed
to contain fixed-length recordsretlin (two byte) words each. The records in the file are numbered 1
throughreccount TheDEFINE FILE statement or equivale@®PEN statement must be executed before

Fortran 77 Language Reference Manual — Chapter 8, Input/Output Statements - 6

executing &READ, WRITE, or other direct—access statement. The first direct—&€AES for the
specified file opens an existing file; if the file does not exist, an error condition occurs. The first
direct—acces&/RITE for the specified file opens the file and creates a new relative file.

DELETE

TheDELETE statement removes a record from an indexed file. An error condition occurs if the file is not
indexed.

Syntax

DELETE [UNIT=] unum

or

DELETE ([UNIT=] ununf,lOSTAT= m[,ERR= §

where

UNIT=unum is a unit or internal file to be acted on.

IOSTAT=rn is the name of variable in which 1/O completion status is posted.
ERR=s is a statement label to which control is transferred after an error.

See "Control Information Ligtl cilist" and "Input/Output List] iolist" for details on these parameters.

Method of Operation

TheDELETE statement deletes the current record, which is the last record accessed.on unit

Example
The following statement deletes the last record read in from the file connected to logical unit 10.

DELETE (10)

ENCODE

The ENCODE statement transfers data between internal files, encoding the transferred data from internal
format to character format.

Note: This statement primarily provides the same function @8ARETE statement, using internal files.
Except that the input is read from a numeric scalar or array rather than a character string, the concept of
multiple records is not supported. The record length is user specified. Where possibI¢RIUBE a

statement instead 8NCODE in new programs to make them compatible with different Fortran 77
operating environments.

Syntax
ENCODE (n, f, targef,ERR= q[,IOSTAT= rn])[iolist]

Fortran 77 Language Reference Manual — Chapter 8, Input/Output Statements — 7

where

n is an integer expression specifying the number of characters to be translated to
character format.

f is a format specifier (as described in the "Format SpecifieMT").

ERR=s See "Control Information Lidil cilist" for an explanation of this parameter.
IOSTAT=rn See "Control Information Ligil cilist" for an explanation of this parameter.
target is a scalar reference or array indicating the destination of the characters after

translation to external form.

iolist is an optional list specifying the source data, as described in "Input/Outptit List
iolist".

Method of Operation

The relationship between the 1/O list and the format specifier is the same as for formattedets.
padded with blanks if fewer tharcharacters are transferred. The maximum number of characters
transmitted is the maximum number possible fortdhgetdata type. Itargetis an array, the elements are
processed in subscript order.

ENDFILE

TheENDFILE statement writes an endfile record as the next record of the file. It can be used with both
unformatted and formatted data files.

Syntax

ENDFILE u
ENDFILE (alist)

where

u is an external unit identifier

alist is a list of the following specifiers:

[UNIT =]u is a required unit specifien.must be an integer expression that identifies the number
of an external unit. If the keywokdNIT= is omitted, them must be the first
specifier inalist.

IOSTAT=ios is an I/O status specifier that specifies the variable to be defined with a status value by
theENDFILE statement. A zero value fimsdenotes a no error condition, while a
positive integer value denotes an error condition.

ERR=s is an error specifier that identifies a statement number to which control is transferred

when an error condition occurs during the execution cENMBFILE statement.

Note: An error message is issued if this statement references a keyed—access file.

Fortran 77 Language Reference Manual — Chapter 8, Input/Output Statements — 8

Method of Operation

The unit specifier is required and must appear exactly once. The other specifiers are optional and can
appear at most once each in #tist. Specifiers can appear in any order (for exceptions refer to "Unit
Specifierd UNIT").

An ENDFILE statement writes an endfile record. The specified file is then positioned after the endfile
record. If a file is connected for direct access, only those records before the endfile record are considered
to have been written and thus can be read in subsequent direct—access connections to the file.

An ENDFILE statement for a file that is connected but does not exist creates the file.

After anENDFILE statement, BACKSPACE or REWIND statement must be used to reposition the
file before the execution of any data transfer 1/0O statement.

Note: If the program is compiled with thevms_endfileoption, the file can still be written to after the
endfile record.

Examples
The following statements are exampleENDFILE statements.

ENDFILE 2
ENDFILE (2,I0STAT=IE, ERR=1000)

FIND

TheFIND statement positions a file to a specified record number and sets the associate variable number
(defined in arOPEN or DEFINE FILE statement) to reflect the new position. It is functionally

equivalent to a direct—acc@dSAD statement except that imdist is specified and no data transfer takes
place. The statement opens the file if it is not already open.

Syntax
FIND (JUNIT=] u,REC=rn[,ERR= gq[,IOSTAT= rn])
where

u is an integer expression that identifies the number of an external unit that contains the
file. The number must refer to a relative file.

ERR=5 IOSTAT=rn, REC=rn
See "Control Information Lidil cilist” for an explanation of these parameters.

INQUIRE

TheINQUIRE statement inquires about the properties of a particular named file or the file connected to a
particular unit. There are two forms: inquire by file and inquire by unit.

Syntax

Fortran 77 Language Reference Manual — Chapter 8, Input/Output Statements — 9

INQUIRE (FILE=

fname [DEFAULTFILE= fname ...,] inglist)

INQUIRE ([UNIT=] u, inglist)

where

FILE=fname

is a file specifierfnameis a character expression that specifies the name of the file
being queried. The named file need not exist or be connected to a unit.

DEFAULTFILE= fname

[UNIT=] u

inglist

ACCESS=cc

This parameter corresponds to BEEFAULTFILE parameter in a®@PEN statement
and is used to inquire about a file assigned a default name when it was opened. See
"OPEN" for details.

is a unit specifierumust be an integer expression that identifies the number of an
external unit. The specified unit need not exist or be connected to a file. If the
keywordUNIT= is omitted, them must be the first specifier inglist.

is composed of one or more of the following specifiers, separated by commas:

acds a character variable or character array element to be assigned a value by the
INQUIRE statement. The value assigned describes the type of file access as shown in
Table 8-1

Table 8-1 File Access Types

Value Assigned File Access

SEQUENTIAL Sequential

DIRECT Direct

KEYED Keyed

UNKNOWN No connection

BLANK= blnk binkis a character variable or character array element to be assigned a value by the

INQUIRE statement. The value assigned describes the blank specifier for the file as
shown in Table 8-2

Table 8-2Blank Control Specifiers

Value of blnk Specifier

NULL Null blank control, connected for formatted 1/0
ZERO Zero blank control

UNKNOWN Not connected or not connected for formatted /0

CARRIAGECONTROL= ccspec

DIRECT=dir

ccspeds assigned one of the following carriage control specifications made in the
OPEN statement for the fil&ORTRAN, LIST, NONE, orUNKNOWN.

dir is a character variable or character array element to be assigned a value by the
INQUIRE statementir is assigned the val¥ES if DIRECT is a legal access
method for the file; it is assigned the vaN© if DIRECT is not a legal access
method. If the processor is unable to determine the accesslityisegssigned the
valueUNKNOWN .

Fortran 77 Language Reference Manual — Chapter 8, Input/Output Statements — 10

ERR=s is an error specifier that identifies a statement number to which control is transferred
when an error condition occurs during the execution ofNKJIRE statement.

EXIST=ex exs a logical variable or logical array element to be assigned a value by the
INQUIRE statementexis assigned the valuERUE. if the specified unit or file
exists; otherwiseexis assigned the valuEALSE. . A unit exists if it is a number in
the range allowed by the processor.

FORM=fm fmis a character variable or character array element to be assigned a value by the
INQUIRE statement. The value assigned is the form specifier for the file as shown in
Table 8-3

Table 8-3 Form Specifiers

Value for fm Specifier

FORMATTED Formatted 1/0
UNFORMATTED Unformatted 1/O
UNKNOWN Unit is not connected

FORMATTED= fmt
fmtis a character variable or character array element to be assigned a value by the
INQUIRE statementmtis assigned the valES if FORMATTED is a legal form
for the file;fmtis assigned the validO if FORMATTED is not a legal form. If the
processor is unable to determine the legal forms of data tranfisrassigned the
valueUNKNOWN .

IOSTAT=ios is an I/O status specifier that specifies the variable to be defined with a status value by
theINQUIRE statement. A zero value fimsdenotes a no error condition, while a
positive integer value denotes an error condition.

KEYED=keystat
keystais a character scalar memory reference assigned a value as shown in Table 8-4

Table 8—-4 Keyed—-Access Status Specifiers

keystat Meaning

YES Indexed file, keyed access allowed
NO Keyed access not allowed
UNKNOWN Access type undetermined

NAMED=nmd nmds a logical variable or logical array element to be assigned a value by the
INQUIRE statementimdis assigned the valuERUE. if the file has a name.
Otherwisenmdis assigned the valuEALSE..

NAME=fn fnis a character variable or character array element to be assigned a value by the
INQUIRE statementin is assigned the name of the file if the file has a name.
Otherwisefnis undefined. If th&€lAME specifier appears in adNQUIRE by file
statement, its value is not necessarily the same as the name given in the file specifier.

NEXTREC=nr nris an integer variable or integer array element to be assigned a value by the

Fortran 77 Language Reference Manual — Chapter 8, Input/Output Statements — 11

INQUIRE statementaris assigned the valuet 1, wheren is the record number of

the last record read or written for direct access on the specified unit or file. If the file
is connected but no records have been read or writténassigned the value 1. If the
file is not connected for direct accessis assigned the value 0.

NUMBER=num numis an integer variable or integer array element that is assigned a value by the
INQUIRE statementnumis assigned the external unit identifier of the unit currently
connected to the filemumis undefined if there is no unit connected to the file. This
specifier cannot be used with YQUIRE by unit statementlQUIRE (ulist)).

OPENED=0d odis a logical variable or logical array element to be assigned a value by the
INQUIRE statementd is assigned the valu€RUE. if the file specified is
connected to a unit or if the specified unit is connected to a file. Otheodirse,
assigned the valuEALSE..

ORGANIZATION= org
orgis a character scalar memory reference assigned the value of the file organization
established when the file was opened; it has one of the following values:
SEQUENTIAL, RELATIVE , INDEXED, orUNKNOWN (always assigned to
unopened files).

RECL=rcl rcl is an integer variable or integer array element to be assigned a value by the
INQUIRE statementcl is assigned the value of the record length in number of
characters for formatted files and in words for unformatted files. If there is no
connection or if the connection is not for direct acaetdiecomes undefined.

RECORDTYPE-=rectype
rectypeis a character scalar memory reference assigned the value of the record type
file established when the file was opened; it has one of the following VRIMESD ,
VARIABLE , STREAM_LF, orUNKNOWN.

SEQUENTIAL=seq
seqis a character variable or character array element to be assigned a value by the
INQUIRE statementeqis assigned the val¢ES if SEQUENTIAL is a legal
access method for the filgeqis assigned the valldO if SEQUENTIAL is not a
legal access method. If the processor is unable to determine the legal access methods,
seqis assigned the valudNKNOWN .

UNFORMATTED= unf
unfis a character variable or character array element to be assigned a value by the
INQUIRE statementunfis assigned the value ¥ES if UNFORMATTED is a
legal format for the filegnfis assigned the validO if UNFORMATTED is not a
legal format for the file. If the processor is unable to determine the legalffim,
assigned the valugNKNOWN.

Method of Operation

Specifiers can be giveniiftist oriulistin any order ("Unit Specifidd UNIT" lists exceptions).

Fortran 77 Language Reference Manual — Chapter 8, Input/Output Statements — 12

An INQUIRE statement assigns values to the specifier variables or array elermehfis seq dir, fmt,
andunfonly if the value of the file specifiénameis accepted by the processor and if a file exists by that
name. Otherwise, these specifier variables become undefined. Each specifier can appear at most once in
theiflist oriulist, and the list must contain at least one specifier.

An INQUIRE statement assigns values to the specifier variables or array elenmentsnd fn, acg seq

dir, fm, fmt unf rcl, nr, andbink only if the specified unit exists and if a file is connected to it. Otherwise,
these specifier variables become undefined. However, the specifier vagiednhetod are always defined
unless an error condition occurs. All inquiry specifier variables exaespecome undefined if an error
condition occurs during execution of NQUIRE statement.

Examples
The following examples sholMQUIRE statements.

INQUIRE (FILE="MYFILE.DATA',NUMBER=IU,RECL=IR)
INQUIRE (UNIT=6, NAME=FNAME)

OPEN

The OPEN statement creates files and connects them to units. It can create a preconnected file, create and
connect a file, connect an existing file, or reconnect an already connected file. See "File Positions" in
Chapter 1 of the Fortran 77 Programmer’s Guide for information on the relative record position in a file
after arOPEN is executed.

Syntax
OPEN (olist)
whereolistis a list of the following specifiers, separated by commas:

[UNIT=]u is a required unit specifien.must be an integer expression that identifies the number
of an external unit. If the keywokdNIT= is omitted, then the must be the first
specifier inolist

IOSTAT=ios is an I/O status specifier that identifies the variable to be defined with a status value
by theOPEN statement. A zero value flmsdenotes a no error condition, while a
positive integer value denotes an error condition.

ERR=s is an error specifier that identifies a statement number to which program control is to
be transferred when an error condition occurs during execution OPtES|
statement.

FILE=fname is a file specifierfnameis a character expression specifying the name of the external

file to be connected. The file name must be a name allowed by the processer.

can also be a numeric variable to which Hollerith data is assigned. A null character
terminates the filename. Three VMS predefined system logical ia8¥¢SSINPUT

, SYS$OUTPUT, andSYS$ERROR] are supported. These names allovO&EN

Fortran 77 Language Reference Manual — Chapter 8, Input/Output Statements — 13

statement to associate an arbitrary unit number to standard input, standard output, and
standard error, respectively, instead of the standard predefined logical unit numbers 5,
6, and 0.

ACCESS=acc is an access specifi@ccis a character expression that, when trailing blanks are
removed, has one of the following valuB&QUENTIAL , DIRECT, KEYED, or
APPEND.SEQUENTIAL specifies that the file is to be accessed sequentially.
DIRECT specifies that the file is to be accessed by record numBERECT is
specified,jolist must also contain a record length specifieiollst does not contain
an access specifier, the vaBEQUENTIAL is assumecKEYED specifies that the
file is accessed by a key—field valA®PEND specifies sequential access so that,
after execution of a@PEN statement, the file is positioned after the last record.

ASSOCIATEVARIABLE= asva
specifies direct access only. After each I/O operatismarcontains an integer
variable giving the record number of the next sequential record number in the file.
This parameter is ignored for all access modes other than direct access.

BLANK= blnk is a blank specifieblnkis a character expression that, when all trailing blanks are
removed, has the valdJLL (the default) oEERO. NULL ignores blank
characters in numeric formatted input fieldERO specifies that all blanks other
than leading blanks are to be treated as zeradidf does not contain a blank
specifier, the valuBlULL is assumed.

CARRIAGECONTROL= type
typeis a character expression that determines carriage—control processing as shown in
Table 8-5

Table 8-5 Carriage—Control Options

Value of type Meaning

FORTRAN Standard Fortran interpretation of the first character
LIST Single spacing between lines

NONE No implied carriage control

LIST is the default for formatted files, aN®DNE is the default for unformatted files.
When the-vms_ccoption (refer to Chapter 1 of the Fortran 77 Programmer’s Guide)
is specified FORTRAN becomes the default for the standard output unit (unit 6).

DEFAULTFILE= fname
fnameis either a character expression specifying a path name or an alternate prefix
filename for the opened unit. When specified, the full filename of the opened unit is
obtained by concatenating the string specifiethaynewith either the string in the
FILE parameter (if specified) or with the unit number (WR8rE is absent)fname
can also be a numeric variable to which Hollerith data is assigned. A null character
terminates the filename.

DISP[OSE]=disposition
dispositionis a character expression that designates how the opened file is to be

Fortran 77 Language Reference Manual — Chapter 8, Input/Output Statements — 14

effect on the closed file.

Table 8-6 Disposition Options

Value for disposition File status after CLOSE

KEEP Retained (default)

SAVE Same as KEEP

PRINT Printed and retained.

PRINT/DELETE Printed and deleted.

SUBMIT Executed and retained

SUBMIT/DELETE Executed and deleted

FORM=fm is a form specifiefmis a character expression that, when all trailing blanks are

removed has either the valt® RMATTED orUNFORMATTED . The file opened
with FORMATTED is connected for formatted 1/0, and a file opened with
UNFORMATTED is connected for unformatted 1/0. The extensBWSTEM and
BINARY can also be used to specify the form of the file. A file opened with the
SYSTEM specifier is unformatted and has no record marks. Data is written/read as
specified by the I/O list with no record boundary, which is equivalent to opening a file
with theBINARY specifier on the IRIS 3000 series. A file opened BitHARY

allows unformatted binary records to be read and written using forrra#D and
WRITE statements. This form is only needed if Ahedit descriptor is used to dump
out numeric binary data to the fileitfist contains no form specifier, the default

value isFORMATTED for sequential access files ddMIFORMATTED for direct
access files.

KEY=(keylstarkeylenfl typgd [, key2starkey2enftypd]...)
defines the location and data type of one or more keys in an indexed record. The
following rules apply t&KEY parameters:

» Atleast one key (the primary key) must be specified when creating an indexed
file.

» typeis eithedNTEGER or CHARACTER (the default), defining the data type
of the key.

* INTEGER keys must be specified with a length of 4.
e The maximum length of a key is 512 bytes.

» keylstarandkeylendire integers defining the starting and ending byte positions
of the primary field, which is always requirday2starandkey2endnd
subsequent specifications define the starting and ending positions of alternate
fields, which are optional. There is no limit to the number of keys that can be
specified.

e The sequence of the key fields determines the value in a key-of-reference
specifier KEYID , described in "Control Information Ligt cilist". KEYID=0
specifies the field starting theylstar{primary) key;KEYID=1 specifies the

Fortran 77 Language Reference Manual — Chapter 8, Input/Output Statements — 15

field starting akey2startand so forth.

« TheKEY field must be specified only when an indexed file is created. The key
specifications in the firs DPEN remain in effect permanently for subsequent file
openings. KKEY is specified when opening an existing file, the specifications
must match those specified when the file was created.

MAXREC=n wheren is a numeric expression defining the maximum number of records allowed in
a direct-access file. If this parameter is omitted, no maximum limit exists.

RECL=rl is a record length specifiat.is a positive integer expression specifying the length in
characters or processor—dependent units for formatted and unformatted files,
respectively. This specifier is required for direct—access files and keyed—access files;
otherwise, it must be omitted.

READONLY specifies that the unit is to be opened for reading only. Other programs may open the
file and have read-only access to it concurrently. If you do not specify this keyword,
you can both read and write to the specified file.

RECORDSIZE=rI
has same effect &ECL.

RECORDTYPE-=rt
when creating a filet defines the type of records that the file is to contatgan be
one of the following character expressidiiXED , VARIABLE , orSTREAM_LF.
If RECORDTYPE is omitted, the default record type depends on the file type, as
determined by thACCESSand/o-ORM parameters. The default types are shown
in Table 8-7

Table 8-7 Default Record Types

File Type Record Type (Default)
Relative or indexed FIXED
Direct—access sequential FIXED
Formatted sequential access STREAM_LF
Unformatted sequential access VARIABLE

The following rules apply:

e If RECORDTYPE is specifiedjt must be the appropriate default value shown
in Table 8-7

e When writing records to a fixed-length file, the record is padded with spaces (for
formatted files) or with zeros (for unformatted files) when the output statement
does not specify a full record.

SHARED ensures that the file is as up to date as possible by flushing each record as it is written.

STATUS=sta is a file status specifiestais a character expression that, ignoring trailing blanks, has
one of the following value®©LD requires théILE= fnamespecifier, and it must
exist. NEW requires th&ILE=fnamespecifier. The file is created BPEN, and the
file status is automatically turned@i.D. A file with the same name must not

Fortran 77 Language Reference Manual — Chapter 8, Input/Output Statements — 16

already existSCRATCH creates an unnamed file that is connected to the unit from
UNIT= and will be deleted when that unit is closeddhyOSE. DEFAULTFILE

can be used to specify a temporary directory to be used for opening the temporary
file. Named files should not be used W\BERATCH. UNKNOWN meaning is
processor dependent. SeeBoetran 77 Programmer’s Guidir more information.

If the STATUS specifier is omittedJNKNOWN is the default.

TYPE=sta is the same é&8TATUS.

Rules for Use
« Specifiers can be giveniaolist in any order (for an exception, see WRIT specifier on page 170).

« The unit specifier is required; all other specifiers are optional. The record-length specifier is required
for connecting to a direct-access file.

e The unit specified must exist.

« An OPEN statement for a unit that is connected to an existing file is allowed. If the file specifier is
not included, the file to be connected to the unit is the same as the file to which the unit is connected.

« Afile to be connected to a unit that is not the same as the file currently connected to the unit has the
same effect as @LOSE statement without a file status specifier. The old file is closed, and the new
one is opened.

« If the file to be connected is the same as the file to which the unit is currently connected, then all
specifiers must have the same value as the current connection except the valBeAifle
specifier.

* See"Data Transfer Rules" for additional rules.

Examples
The following examples show the useGPEN statements:

OPEN (1, STATUS="NEW’)

OPEN (UNIT=1,STATUS="SCRATCH’,ACCESS="DIRECT’,RECL=64)
OPEN (1, FILE='MYSTUFF’, STATUS="NEW',ERR=14,

+ ACCESS='DIRECT’,RECL=1024)

OPEN (K,FILE=’"MAILLIST’,ACCESS="INDEXED’,FORM="FORMATTED’,
+RECL=256,KEY=(1:20,21:30,31:35,200:256))

PRINT or TYPE

ThePRINT (or TYPE) statement transfers data from the output list items to the file associated with the
system output unit.

Syntax

PRINT f[, iolist]

Fortran 77 Language Reference Manual — Chapter 8, Input/Output Statements — 17

wheref is the format specifier andlist is an optional output list specifying the data to be transferred as
described in "Control Information Ligt cilist” and "Input/Output List] iolist".

TYPE is a synonym foPRINT.

Rules for Use

Use thePRINT statement to transfer formatted output to the system output unit. See "Data Transfer
Rules" for additional rules.

Examples
The following examples show the usePBINT andTYPE statements.

PRINT 10, (FORM (L), L=1,K+1)
PRINT *, X,Y,Z
TYPE *, ' VOLUME IS *,V,’ RADIUS IS ',R

READ (Direct Access)

The direct-acce®EAD statement transfers data from an external file to the items specified by the input
list. Transfer occurs using the direct-access methodCfgxer 7, "Input/Output Processing," for
details about the direct access method.)

Syntax: Formatted

READ ([UNIT=] unum REC=rn, f[IOSTAT= iogd[,ERR= 4)[iolist]

Syntax: Unformatted

READ ([UNIT=] unum REC=rn, [[IOSTAT= m][LERR= s])[iolist]

where

UNIT=unum is a unit or internal file to be acted on.

f is a format specifier.

REC=rn is a direct—access modeis the number of the record to be accessed.
IOSTAT=rn is the name of variable in which 1/O completion status is posted.
ERR=s is the statement label to which control is transferred after an error.
iolist specifies memory location where data is to be read.

See the "Control Information Ligt cilist" and "Input/Output List] iolist" for details on these
parameters.

See "Control Information Ligil cilist", "Input/Output List] iolist", and Chapter 7, "Input/Output
Processing," for more information on formatted and unformatted 1/O.

Fortran 77 Language Reference Manual — Chapter 8, Input/Output Statements — 18

READ (Indexed)

The indexedREAD statement transfers data from an external indexed file to the items specified by the
input list. Transfer occurs using the keyed access method. (See Chapter 7, "Input/Output Processing.")

Syntax: Formatted

READ[UNIT=] unum fKEY=val,KEYID= kn[,IOSTAT= rm|,ERR= g)[iolist]

Syntax: Unformatted

READ ([UNIT=] unum ke, keyid[,JOSTAT= m]|[LERR= d)[iolist]

where

UNIT=unum is a unit or internal file to be acted upon.

f is a format specifier.

KEY=val is the value of the key field in the record to be accessed.

KEYID= kn is the key reference specifier.

IOSTAT=rn is the name of variable to which 1/0O completion status is posted.
ERR=s is the statement label to which control is transferred after an error.
iolist specifies memory location where data is read.

See "Control Information Ligfl cilist" and "Input/Output List] iolist" for details on these parameters.

See "Data Transfer Rules" and Chapter 7, "Input/Output Processing," for more information on indexed 1/0
and the differences between formatted and unformatted 1/O.

READ (Internal)

The internaREAD statement transfers data from an internal file to internal storage.

Syntax: Formatted

READ ([UNIT=] unum f[,IOSTAT= m|[,ERR= [,END= eof)[iolist]

Syntax: List-Directed

READ ([UNIT=] unum* [IOSTAT= m|[,ERR= d[,END= eof)[iolist]

where

UNIT=unum is a unit or internal file to be acted upon.

f is a format specifier

* is a list—directed input specifier.

IOSTAT=rn is the name of variable in which 1/O completion status is to be posted.

Fortran 77 Language Reference Manual — Chapter 8, Input/Output Statements — 19

ERR=s is the statement label to which control is transferred after an error.

END=eof is the statement label to which control is transferred upon end-of-file.

iolist specifies memory location where data is to be read.

See "Control Information Lidl cilist" and "Input/Output LisE] iolist" for details on these parameters.

See "Data Transfer Rules" and Chapter 7, "Input/Output Processing," for more information on formatted
and list-directed 1/0. Chapter 7 also contains an example of I/O using internal files.

Note: The DECODE statement can also be used to control internal input. See "DECODE" for more
information.

READ (Sequential)

The sequentidREAD statement transfers data from an external record to the items specified by the input
list. Transfers occur using the sequential-access method or keyed—access me€@luabteset
"Input/Output Processing.")

The four forms of the sequentREAD statement are
« formatted

» list-directed

« unformatted

* namelist—directed

The following parameters apply to all four forms of the sequeREAD statement:

[UNIT=]unum

is a unit or internal file to be acted upon.
f is a format specifier.
* is a list—directed input specifier.

NML=[group—namg
is a namelist specifier. If the keywoRML is omitted group—namenust
immediately followunum

IOSTAT=rn is the name of the variable in which 1/O completion status is posted.
ERR=s is the statement label to which control is transferred after an error.
END=eof is the statement label to which control is transferred on end of file.
iolist specifies memory location where data is read.

See "Control Information Lidil cilist" for details on these parameters.

Formatted READ (Sequential)

Fortran 77 Language Reference Manual — Chapter 8, Input/Output Statements — 20

Syntax

READ ([UNIT=] unum f[,IOSTAT= m|,ERR= g [,END= eof)[iolist]
READ [, iolist]

Method of Operation

A formattedREAD statement transfers data from an external record to internal storage. It translates the
data from character to binary format using thpecifier to edit the data.

List-Directed READ (Sequential)

Syntax

READ ([UNIT=] unum*[,IOSTAT= m][,ERR= g[,END= eof)[iolist]
READ [iolist]

Method of Operation

A list—directedREAD statement transfers data from an external record to internal storage. It translates the
data from character to binary format using the data types of the itéofistito edit the data.

Rules for Use
« The external record can have one of the following values:

- A constant with a data type of integer, real, logical, complex, or character. The rules given in
Chapter 2, "Constants and Data Structures,” define the acceptable formats for constants in the
external record.

— Anull value, represented by a leading comma, two consecutive constants without intervening
blanks, or a trailing comma.

- A repetitive forman*constantwheren is a nonzero, unsigned integer constant indicating the
number of occurrences obnstant n*represents repetition of a null value.

« Hollerith, octal, and hexadecimal constants are not allowed.

« A value separator must delimit each item in the external record; a value separator can be one of the
following:

-~ one or more spaces or tabs
— acomma, optionally surrounded by spaces or tabs

e A space, tab, comma, or slash appearing within a character constant are processed as part of the
constant, not as delimiters.

« A slash delimits the end of the record and causes processing of an input statement to halt; the slash
can be optionally surrounded by spaces and/or tabs. Any remaining itierist ire unchanged
after theREAD.

Fortran 77 Language Reference Manual — Chapter 8, Input/Output Statements — 21

* When the external record specified contains character constants, a slash must be specified to
terminate record processing. If the external record ends with a blank, the first character of the next
record processed follows immediately after the last character of the previous record.

« EachREAD statement reads as many records as is required by the specificatiias fny items
in a record appearing after a slash are ignored.

Unformatted READ (Sequential)

Syntax
READ ([UNIT=] ununj,IOSTAT= m|[,ERR= q[,LEND= eof)[iolist]

Method of Operation

An unformattedREAD statement transfers data from an external record to internal storadREADe
operation performs no translation on read-in data. The data is read in directly to thedtesnsime
type of each data item in the input record must match that declared for the correspondingpligm in

When a sequential-unformatiREAD is performed on a direct-access file, the next record in the
direct—access file is assumed.

Rules for Use

e There must be at least as many items in the unformatted record as thereliste Aalditional items
in the record are ignored, and a subseqR&RD accesses the next record in the file.

e The type of each data item in the i3nput record must match the corresponding dat@ltsin in

Namelist-Directed READ (Sequential)

Syntax

READ (unumNML=group—nanmjfdOSTAT= r|[,ERR= d[,END= eof)[iolist]
READ name

Method of Operation

A namelist-directeddEAD statement locates data in a file using the group namBEAMELIST
statement (see Chapter 4, "Specification Statements.") It uses the data types of the items in the
correspondinfNAMELIST statement and the forms of the data to edit the data.

Figure 8-1llustrates rules for namelist input data and shows its format.

Fortran 77 Language Reference Manual — Chapter 8, Input/Output Statements — 22

:*;islgm.:.:-—:?a'ﬁe e = vake [fem=vate, 1% [EMND]
3 3 F 3

Aconstant as specified by the Optional end deliniter
rules for list-directed 150

A namelist itermn a3 defined ina
previous NAMELIST

The name of the namelist as specified in Fequired end delimeter; ampetsand
a previous NAMELIST statement (&) als0 acceptable

Fequired start delimeter in colurn 2;
ampersand (7 & % alzo acceptable

Figure 8—1 Namelist Input Data Rules

Rules for Use

Bothgroup—namanditemmust be contained within a single record.

Spaces and/or tabs are not allowed withioup—namer item Howeverjtemcan contain spaces or
tabs within the parentheses of a subscript or substring specifier.

Thevalueitem can be any of the values given under the first rule in the previous section,
“List-Directed READ (Sequential)"

A valueseparator must delimit each item in a list of constants. See the third and fourth rules in
“List-Directed READ (Sequential)"

A separator must delimit each list of value assignments. See the third rule in "List-Directed READ
(Sequential)". Any number of spaces or tabs can precede the equal sign.

Whenvaluecontains character constants, a dollar sign ($) or ampersand (&) must be specified to
terminate processing of the namelist input. If the namelist input ends with a blank, the first character
of the next record processed follows immediately after the last character of the previous record.

Entering a question mark (?) after a namelist—dirédE&D statement is executed causes the
group—namand current values of the namelist items for that group to be displayed.

You can assign input values in any order in the fortaatvalue Multiple—line assignment
statements are allowed. Each new line must begin on or after column 2; column 1 is assumed to
contain a carriage—control character. Any other character in column 1 is ignored.

You can assign input values for the following data types: integer, real, logical, complex, and
character. Refer to Table SGnZChapter 5 for the conversion rules when the data type of the namelist
item and the assigned constant value do not match.

Numeric—-to—character and character—to—numeric conversions are not allowed.

Fortran 77 Language Reference Manual — Chapter 8, Input/Output Statements — 23

« Constant values must be given for assigned values, array subscripts, and substring specifiers.
Symbolic constants defined bPARAMETER statement are not allowed.

Example

In the following example, the name of a file is read from the standard inptitentome, the file is
opened, and the first record is read. A branch is taken to statement 45 (not shown) when end of file is
encountered.

read (*,10) filename
10 format (a)
open (2,file=filename)
read (2, 20, end=45) word
20 format (A50)

See "Data Transfer Rules" and Chapter 7, "Input/Output Processing,” for more information on formatted,
list-directed unformatted, and namelist—directed I/O.

REWIND

TheREWIND statement positions a file at its initial point. It can be used with both unformatted and
formatted data files.

Syntax

REWIND u
REWIND (alist)

where
u is an external unit identifier
alist is a list of the following specifiers:
[UNIT =]u is a required unit specifian.must be an integer expression that identifies the number
of an external unit. If the keywokdNIT= is omitted, them must be the first
specifier inalist.
IOSTAT =ios is an I/O status specifier that specifies the variable to be defined with a status value by
theREWIND statement. A zero value frmsdenotes a no error condition, while a
positive integer value denotes an error condition.
ERR =s is an error specifier that identifies a statement number to which control is transferred

when an error condition occurs during the execution oREE®/IND statement.

Method of Operation

The unit specifier is required and must appear exactly once. The other specifiers are optional and can
appear at most once each in #tist. Specifiers can appear in any order (refer to"Unit Specifi&iNIT"
for exceptions). ThRREWIND statement positions the specified file at its initial point. If the file is

Fortran 77 Language Reference Manual — Chapter 8, Input/Output Statements — 24

already at its initial point, thREWIND statement has no effect. It is legal to specRE&VIND
statement for a file that is connected but does not exist, but the statement has no effect.

Examples
The following statements show examples ofREAVIND statement.

REWIND 8
REWIND (UNIT=NFILE,ERR=555)

REWRITE

TheREWRITE statement transfers data to an external indexed file from the items specified by the output
list. The record transferred is the last record accessed from the same file using anREchRed
statement.

Syntax: Formatted

REWRITE (JUNIT=] unum f,IOSTAT= m][,ERR= q)[iolist]

Syntax: Unformatted
REWRITE ([UNIT=] ununj,IOSTAT= m]|[,ERR= d)[iolist]
where

[UNIT=]unum is the unit or internal file to be acted on.

f is a format specifier.
IOSTAT=rn is the name of a variable in which 1/O completion status is posted.
ERR=s is a statement label to which control is transferred after an error.

See "Control Information LisHl cilist" and "Input/Output List] iolist" for details on these parameters.

Rules for Use

TheREWRITE statement is supported for both formatted and unformatted indexed files. The statement
provides a means for changing existing records in the file.

See "Data Transfer Rules" for additional rules.

Example
REWRITE (10), A,B,C

The previous statement rewrites the last record accessed to the indexed file connected to logical unit 10.

UNLOCK

TheUNLOCK statement makes the last record read from an indexed file available for access by other

Fortran 77 Language Reference Manual — Chapter 8, Input/Output Statements — 25

users.

Syntax

UNLOCK [UNIT=] unum
UNLOCK ([UNIT=] ununj,IOSTAT= rn][,ERR= {

where

UNIT=unum is a unit or internal file to be acted on.

IOSTAT=rn is the name of variable in which 1/O completion status is posted.
ERR=s is the statement label to which control is transferred after an error.

See "Control Information Lidfl cilist” for details on each of these parameters.

Method of Operation

After a record is read from an indexed file, it cannot be accessed by other userdUMitiOCTK
statement is executed, the record is rewritten, or a new record is read.

Example
The following statement unlocks the last record read in from the file connected to logical unit 10.

UNLOCK (10)

WRITE (Direct Access)

The direct-acce¥¥RITE statement transfers data from internal storage to an external indexed file using
the direct—access method.

Syntax: Formatted

WRITE (JUNIT=] unumREC=rn, f,IOSTAT= m|,ERR= d)[iolist]

Syntax: Unformatted

WRITE (JUNIT=] unumREC=rn[,IOSTAT= iog[,ERR= g)[iolist]

where

[UNIT=]unum is a unit or internal file to be acted upon.

REC=rn is a direct—access modeis the number of the record to be accessed.
f is a format specifier.

IOSTAT=rn is the name of variable in which 1/O completion status is posted.
ERR=s is the statement label to which control is transferred after an error.
iolist specifies memory location from which data is written.

Fortran 77 Language Reference Manual — Chapter 8, Input/Output Statements — 26

See "Control Information Ligll cilist" and "Input/Output LisE] iolist" for details on these parameters.

See "Data Transfer Rules" and Chapter 7, "Input/Output Processing," for more information on formatted
and unformatted I/O.

Rules for Use

Execution of AVRITE statement for a file that does not exist creates the file.

WRITE (Indexed)

The indexedVRITE statement transfers data from internal storage to external records using the
keyed-access method.

Syntax: Formatted

WRITE ([UNIT=] unum f,IOSTAT= m|,ERR= §)[iolist]

Syntax: Unformatted
WRITE (JUNIT=] ununj,IOSTAT= m|[,ERR= d)[iolist]
where

[UNIT=]unum is a unit or internal file to be acted on.

f is a format specifier.

* is the list—directed output specifier.

IOSTAT=rn is the name of a variable in which 1/O completion status is posted.
ERR=s is a statement label to which control is transferred after an error.
iolist specifies a memory location from which data is written.

See "Control Information Ligfl cilist" and "Input/Output List] iolist" for details on these parameters.

See "Data Transfer Rules" and Chapter 7, "Input/Output Processing," for more information on formatted
and unformatted 1/O.

Rules for Use

Execution of AVRITE statement for a file that does not exist creates the file.

WRITE (Internal)

The internaWRITE statement transfers data to an external file or an internal file from the items
specified by the output list.

Syntax: Formatted

WRITE ([UNIT=] unum f[,JOSTAT= io§[,ERR= §)[iolist]

Fortran 77 Language Reference Manual — Chapter 8, Input/Output Statements — 27

Syntax: List—-directed
WRITE ([UNIT=] unum *[,IOSTAT= r],ERR= d)[iolist]
where

[UNIT=]unum is a unit or internal file to be acted on.

f is a format specifier.

* is the list—directed output specifier.

IOSTAT=rn is the name of a variable in which 1/O completion status is posted.
ERR=s is the statement label to which control is transferred after an error.
iolist specifies a memory location from which data is written.

See "Control Information Ligll cilist" and'Input/Output List] iolist" for details on these parameters.

See "Data Transfer Rules" and Chapter 7, "Input/Output Processing,” for more information on formatted
and list—directed 1/0. Chapter 7 also contains an example of I/O using internal files.

Rules for Use
Execution of an intern&/RITE statement for a file that does not exist creates the file.

Note: TheENCODE statement can also be used to control internal output. SEQI®@DE statement
description on page 161 for more information.

WRITE (Sequential)

The sequentidVRITE statement transfers data to an external file or an internal file from the items
specified by the output list.

The four types of sequentlIRITE statements are
» formatted
e unformatted
+ list—directed

* namelist—directed

Each of these statements is discussed in the following sections.

Execution of AWRITE statement for a file that does not exist creates the file.

Parameter Explanations
UNIT=unum is a unit or internal file to be acted on.

NML= group—name
is a namelist specifier.

Fortran 77 Language Reference Manual — Chapter 8, Input/Output Statements — 28

f is a format specifier.

* is the list—directed output specifier.

REC=rn is a direct—access modeis the number of the record to be accessed.
IOSTAT=rn is the name of a variable in which 1/O completion status is posted.
ERR=s is a statement label to which control is transferred after an error.
iolist specifies a memory location from which data is written.

See "Control Information Lidll cilist" and "Input/Output LisE] iolist" for details on these parameters.

See "Data Transfer Rules" and Chapter 7, "Input/Output Processing," for more information on formatted,
list—directed, and unformatted 1/O.

Formatted WRITE (Sequential)

WRITE (JUNIT=] unum f[,IOSTAT= m][,ERR= q)[Iiolist]

Method of Operation

A formattedWRITE statement transfers data from internal storage to an external record using
sequential-access mode. WRITE operation translates the data from binary to character format using
thef specifier to edit the data.

Unformatted WRITE (Sequential)

WRITE ([UNIT=] ununi,IOSTAT= m|[,ERR= g)[iolist]

Method of Operation

An unformattedVRITE statement performs no translation on read-in data. The data is read in directly to
the items iriolist. The type of each data item in the input record must match that declared for the
corresponding item ilist.

When sequential-formatt&RITE is performed on a direct—access file, the next record in the file is
assumed and the record is zero—padded to the end as if it were a direct, unférRidted
List-Directed WRITE

WRITE (JUNIT=] unum*[,IOSTAT= rm|[,ERR= q)[iolist]

Method of Operation

A list-directeVRITE statement transfers data from internal storage to an external record using
sequential-access mode. WWRITE operation translates the data from binary to character format using
the data types of the itemsialist to edit the data.

Rules

Fortran 77 Language Reference Manual — Chapter 8, Input/Output Statements — 29

« The item to be transferred to an external record can be a constant with a data type of integer, real,
logical, complex, or character.

« The rules given in Chapter 2, "Constants and Data Structures,"define the acceptable formats for
constants in the external record, except character constant. A character constant does not require
delimiting apostrophes; an apostrophe within a character string is represented by one apostrophes
instead of two.

Table 8—8hows the data types and the defaults of their output format.
Table 8—-8 Default Formats of List—Directed Output

Data Type Format Specification of Default Output
BYTE L2

LOGICAL*1 15

LOGICAL*2 L2

LOGICAL*4 L2

INTEGER*1 15

INTEGER*2 17

INTEGER*4 i12

REAL*4 1pgl5.7e2

REAL*8 1pg24.16e2

COMPLEX '(,1pgl5.7e2,’,1pgl5.7e2,’)
COMPLEX*16 '(,1pg24.16e2,’,,1pg24.16€e2,’)’
CHARACTER*n An, wheren s the length of the character expression

« List-directed character output data cannot be read as list—directed input because of the use of
apostrophes described above.

e Alist—directed output statement can write one or more records. Position one of each record must
contain a space (blank), which Fortran uses for a carriage—control character. Each value must be
contained within a single record with the following exceptions:

— A character constant longer than a record can be extended to a second record.
— A complex constant can be split onto a second record after the comma.
* The output of a complex value contains no embedded spaces.

< Octal values, null values, slash separators, or the output of a constant or null value in the repetitive
formatn* constanbrn*zcannot be generated by a list—directed output statement.

Namelist-Directed WRITE

Syntax

WRITE([UNIT=] unumNML=group—nanidOSTAT= rn|[,LERR= {[,END= eof)

Method of Operation

Fortran 77 Language Reference Manual — Chapter 8, Input/Output Statements — 30

A namelist-directed/RITE statement transfers data from internal storage to external records. It
translates the data from internal to external format using the data type of the items in the corresponding
NAMELIST statement (see Chapter 4, "Specification Statements.”) A namelist—dRE&tBdor

ACCEPT statement can read the output of a namelist-dirdRTE statement.

Rules for Use

Namelist items are written in the order that referedd&MELIST defines them.

Examples for All Forms of Sequential WRITE
The following statement writes the prongpiter a flenameto standard output:

write (*,105)
105 format (1x,’enter a filename’)

The following statement opens the fii@otemp and writes the recorghir to the file.

open (unit=10, status="unknown’ file="%%temp")
write (10,1910) pair
1910 format (A)

Control Information List [0 cilist

This section describes the components of the control informatioailiist) @nd the 1/O listiflist), which
can be specified as elements of the 1/O statements described in this chapter.

Table 8-8ummarizes the items that can be specified in a cilist. &bstispecifier shown in the table
can appear no more than once tiliat. Note that the keyworddNIT= andFMT= are optional.
Normally, thecilistitems may be written in any order, buliNIT= or FMT= is omitted, the following
restrictions apply:

e The keywordJNIT= can be omitted if and only if the unit specifier is the first item on the list.

* The keyword=MT= can be omitted if and only if the format specifier is the second itemdilishe
and the first item is a unit specifier in which the keywdi T= has been omitted.

A format specifier denotes a formatted 1/O operation; default is an unformatted I/O operation. If a
record specifier is present, then direct access I/O is denoted; default is sequential access.

Table 8-9 Control Information List Specifiers

Specifier Purpose

[UNIT=]u Unit or internal file to be acted on.

[NML= group—nanje Identifies thegroup—namef a list of items for namelist—directed 1/O.

[FMT=]f Formatted or unformatted I/O operations. If formatted, contains format
specifiers for data to be read or written.

REC=rn Number of a record accessed in direct—access mode.

KEY [c] =val Value of the key field in a record accessed in indexed access mode,

where c can be the optional match condition EQ, GT, or GE.

Fortran 77 Language Reference Manual — Chapter 8, Input/Output Statements — 31

KEYID= kn Key-reference specifier, specifying either the primary key or one of the
alternate keys in a record referenced in indexed—-access mode.

IOSTAT=ios Name of a variable in which 1/0O completion status is returned.
ERR=s Label of a statement to which control is transferred if an error occurs.
END=s Label of a statement to which control is transferred if an end—of-file

condition (READ only) occurs.

Unit Specifier O UNIT
The form of a unit specifier is
[UNIT=] u
whereu is a unit identifier specified as follows:
« A nonnegative integer or noninteger expression specifying the unit.

A noninteger expression is converted to integer, and the fractional portion, if present, is discarded
before use.

* An asterisk specifying a unit that is connected for formatted sequential access (external file identifier
only). This denotes the system input unit REBAD statement or the system output unit in a
WRITE statement.

« Anidentifier that is the name of a character variable, character array, character array element, or
substring (internal file identifier only).
An external unit identifier can have the form described in the first or second rule above, except that it
cannot be an asterisk in an auxiliary output statement.
An internal file identifier must be specified in the third rule above.

The syntax shows that you can omit eIT= keyword. IfUNIT= is omitted, the unit identifier must be
first in a control information list. For example, two equivalRRAD statements are

READ(UNIT=5)

READ(5)

Format Specifier O FMT
The syntax of a format specifier is
[FMT=] f

where

f is a format identifier. As shown in the syntax, the keywevtI= can be omitted
from the format identifier. If so, the format identifier must be second in a control
information list, and th&/NIT= keyword must also have been omitted.

The legal kinds of format identifiers are

< the statement label ofRORMAT statement (thEORMAT statement and the format identifier

Fortran 77 Language Reference Manual — Chapter 8, Input/Output Statements — 32

must be in the same program unit)

e an integer variable name assigned to the statement labEQRKAT statement thEORMAT
statement and the format identifier must be in the same program unit)

e acharacter expression (provided it does not contain the concatenation of a dummy argument that has
its length specified by an asterisk)

< the name of a character array

« an asterisk that is used to indicate list—directed formatting

Namelist Specifier 0 NML

The namelist specifier indicates namelist—directed 1/0 withiRE#AD or WRITE statement where
NML is specified. It has the format

[NML=] group—name

wheregroup—namalentifies the list in a previously defin®@BAMELIST statement (see Chapter 4,
"Specification Statements.")

NML can be omitted when preceded by a unit specifier (unum) without the optidialkeyword.

Record Specifier 0 REC
The form of a record specifier is
REC=n

wherern is an expression that evaluates the record number of the record to be accessed in a direct—-access
I/0 operation. Record numbers must be integers greater than zero.

Key-Field-Value Specifier I KEY

The indexed—access method uses the key-field-value specifietD &REWRITE , or other 1/0

statement. A key field in the record is used as criteria in selecting a record from an indexed file. The key
fields for the records in an indexed file are established biEye specifier used in th@PEN statement

that created the file.

The key—field—value specifier has the forms showabie 8-10
Table 8-10Forms of the Key-Field—Value Specifier

Specifier Basis for Record Selection

KEY=kval Key-field valu&val

KEYEQ=kval Key-field valu&valand the key field are equal
KEYGT=kval Key-field value is greater than the key field
KEYGE=kval Key-field value is greater than or equal to the key field

The following rules apply tkvat

« kvalcan be a character or integer expression; if an integer expression, it cannot contain any real or

Fortran 77 Language Reference Manual — Chapter 8, Input/Output Statements — 33

complex values. If the indexed file is formattkdal should always be a character expression.

» The character expression can be an ordinary character string or an array nameQGtgad *1
orBYTE containing Hollerith data.

» The character or integer type specifiedkieal must match the type specified for the key field in the
record.

Key—-of-Reference Specifier 0 KEYID

The key—-of-reference specifier designatesfRIBAD, REWRITE , or other 1/O statement, the key field
in a record to which the key—field-value specifier applies.

The specifier has the following format:
KEYID=n

wheren is a number from 0 to the maximum number of keys defined for the records in the indexed file; O
specifies the primary key, 1 specifies the first alternate key, 2 specifies the second alternate key, and so
on. TheKEY parameter of th©PEN statement that created the files creates and establishes the ordering

of the primary and alternate keys.

If KEYID is not specified, the previoKEYID specification in an I/O statement to the same 1/O unit is
used. The default fiEYID is zero (0) if it is not specified for the first I/O statement.

Input/Output Status Specifier [ios
An I/O status specifier has the form
IOSTAT=ios

whereios is a status variable indicating an integer variable or an integer array element. Execution of an
I/0 statement containing this specifier caussto become defined with one of the following values:

« Zero if neither an error condition nor an end-of-file condition is encountered by the processor,
indicating a successful operation

« Positive integer if an error condition occurred
* Negative integer if an end—of-file condition is encountered without an error condition

For details aboUOSTAT, refer to theerror(3F) andntro(2) manual pages.

Error Specifier 0 ERR
An error specifier has the following form
ERR=s

wheresis an error return label of an executable statement that appears in the same program unit as the
error specifier.

If an error condition occurs during execution of an I/O statement with an error specifier, execution of the
statement is terminated and the file position becomes indeterminate. If the statement contains an I/O status

Fortran 77 Language Reference Manual — Chapter 8, Input/Output Statements — 34

specifier, the status varialilessbecomes defined with a processor—dependent positive integer. Execution
then continues at the statement labealed

End-of-File Specifier J END
The form of an end-of-file specifier is
END=s

wheresis an end-of-file return label of an executable statement that appears in the same program unit as
the end-of-file specifier. An end-of-file specifier may only be usedciistioé aREAD statement.

If an end—-of-file condition is encountered during the executioREBAB statement containing an
end-of-file specifier and no error occurs, execution &EA®D statement terminates. If tREAD
statement contains an I/O status specifier, the I/O status vaaabkromes defined with a
processor—dependent negative integer. Execution then continues at the statemeast labeled

Input/Output List [iolist

This section describes the components of 1/Oilidisf), which can be specified as elements of the I/O
statements described in this chapter.

An input/output list specifies the memory locations of the data to be transferred by the I/O statements
READ, WRITE, andPRINT.

If an array name is given as an /O list item, the elements in the array are treated as though each element
were explicitly specified in the I/O list in storage order. Note that the name of an assumed-size dummy
array (that is, an array declared with an * for an upper bound) must not appear as an /O list item.

Input List
An input list item can be one of the following:
e Variable name.
* Array element name.
e Substring name.
e Array name.
* Implied DO list containing any of the above and other imptied lists.

* An aggregate reference (a structured data item as define@bBg@RD andSTRUCTURE
statement). An aggregate reference can be used only in unformatted input statements. When an
aggregate name appears iri@ist, only one record is read regardless of how many aggregates or
other list items are present.

Examples of input lists are

READ(5,3000,END=2000)X,Y(J,K+3),C(2:4)
READ(JFILE,REC=KNUM,ERR=1200)M,SLIST(M,3),cilist

Fortran 77 Language Reference Manual — Chapter 8, Input/Output Statements — 35

Output List
An output list item can be one of the following:
» Variable name.
* Array element name.
e Substring name.
* Array name.

e Any expression, except a character expression involving concatenation of an operand with a length
specification of asterisk (*), unless the operand is the symbolic name of a constant.

« AnimpliedDO list containing any of the above and other imp&d lists.

* An aggregate reference (a structured data item as define@bBg@RD andSTRUCTURE
statement). An aggregate reference can be used only in unformatted output statements. When an
aggregate name appears iridist, only one record is written regardless of how many aggregates or
other list items are present.

Note that a constant, an expression involving operators or function references, or an expression enclosed
in parentheses may appear in an output list but not in an input list.
An example of an output list is

WRITE(5,200,ERR=10)’ANSWER IS’,N,SQRT(X)+1.23

Implied—-DO Lists

An impliedDO list is a specification that follows the I/O ligl{st) in an 1/O statement. The list permits
the iteration of the statement as though it were contained withid l@op. An impliedDO list has the

form:

(iolist,i= el ed, eJj)

where

iolist is one or more valid names of the data to be acted on.

i is an iteration coun

el e2 ande3 are control parameters. See the description ddetatement in Chapter 6,

"Control Statements," for a descriptioni,afl, e2 ande3

The control variable i must not appear as an input list iteoligt. The list items inolist are specified
once for each iteration of the impli@®D list with the appropriate substitution of values for each
occurrence of the control variable i. When an 1/O error occurs within the iniplddop, the value of
the control variable i is undefined.

Example

Fortran 77 Language Reference Manual — Chapter 8, Input/Output Statements — 36

The following statements writdello World to standard output 100 times:

write (*,111) ("Hello World’,i=1,100)
111 format (1x,A)
end

Data Transfer Rules

Data are transferred between records and items specified by the I/O list. The list items are processed in the
order in which they appear in the list.

The following restrictions apply to data transfer operations:

< Aninput list item must not contain any portion of the established format specification.

« If an internal file has been specified, an I/O list item must not be in the file or associated with the file.
e Each output list item must be defined before the transfer of that item.

« All values needed to determine which entities are specified by an I/O list item are determined at the

beginning of the processing of that item.

The following sections discuss the rules specific to unformatted and formatted 1/O.

Unformatted Input/Output

The execution of an unformatted I/O statement transfers data without editing between the current record
and the items specified in the 1/O list. Exactly one record is either read or written.

For an unformatted input statement, the record must contain at least as many values as the number of
values required by the input list. The data types of the values in the record must agree with the types of the
corresponding items in the input list. Character data from an input record must have the same length
attribute as the corresponding item in the input list.

The following conventions apply to the execution of an unformatted output statement:

« For direct access, the output list must not specify more values than can fit into a record. If the values
specified by the output list do not fill the record, the remainder of the record is filled with zeros.

» For sequential access, the output list defines the size of the output record.

Fortran 77 allows unformatted data transfer only for external files and prohibits it for files connected for
formatted I/0O.

Formatted Input/Output

The execution of a formatted I/O statement transfers data with editing between the items specified by the
1/0 list and the file. The current record and possibly additional records are read or written.

Each execution of BEAD statement causes at least one record to be read, and the input list determines
the amount of data to be transferred from the record. The position and form of that data are established by
the corresponding format specification.

Fortran 77 Language Reference Manual — Chapter 8, Input/Output Statements — 37

In a formatted output operation, each execution oMRETE or PRINT statement causes at least one
record to be written. The amount of data written to the specified unit is determined both by the output list
and the format specification.

When a repeatable edit descriptor in a format specification is encountered, a check is made for the
existence of a corresponding item in the I/O list. If there is such an item, it transmits appropriately edited
information between the item and the record, and then format control proceeds. If there is no
corresponding item, format control terminates. Chapter 9, "Format Specification," explains formatted 1/0
in detail.

Chapter 9
Format Specification

This chapter contains the following subsections:

 "FORMAT Statement"

e "Field and Edit Descriptors"

* "Field Descriptor Reference”

» "Edit Descriptor Reference"

e "Complex Data Editing"

* "Interaction Between I/O List and Format"

e '"List-Directed Formatting”
A format specification provides explicit editing information to the processor on the structure of a
formatted data record. It is used with formatted I/O statements to allow conversion and data editing under

program control. An asterisk (*) used as a format identifier in an I/O statement specifies list-directed
formatting.

A format specification may be defined iIF@RMAT statement or through the use of arrays, variables,

or expressions of type character. During input, field descriptors specify the external data fields and
establish correspondence between a data field and an input list item. During output, field descriptors are
used to describe how internal data is to be recorded on an external medium and to define a
correspondence between an output list item and an external data field.

This section describes tRORMAT statement, field descriptors, edit descriptors, and list—directed
formatting. It also contains a discussion of carriage—control characters for vertical control in printing
formatted records.

As extensions to Fortran 77, the compiler supports additional processor—dependent capabilities, which are
described in thEortran 77 Programmer’s Guide.

Format specifications can be given in two way&@RMAT statements or as values of character arrays,
character variables, and other character expressions.

Format Stored as a Character Entity

In a formatted input or output statement, the format identifier can be a character entity, provided its value
has the syntax of a format specification, as detailed below, on execution. This capability allows a
character format specification to be read in during program execution.

When the format identifier is a character array name, the format specification is a concatenation of all the
elements in the array. When the format identifier is a character array element name, the format
specification is only that element of the array. Therefore, format specifications read through a character
array name can fill the whole array, while those read through a character array element name must fit in a
single element of that array.

Fortran 77 Language Reference Manual — Chapter 9, Format Specification — 1

FORMAT Statement

TheFORMAT statement is a non—executable statement that defines a format specification. It has the
following syntax:

xXFORMAT fs

where

XX is a statement number that is used as an identifieREBAD, WRITE, PRINT, or
ASSIGN(label) statement.

fs is a format specification (described in “Format Specification”).

Format Specification

The syntax of a format specification fs is

(flist])

whereflist is a list of format specifiers of one of the following forms, separated by commas:

[r] fd
ed
[1]fs
where
r is a positive integer specifying the repeat count for the field descriptor or group of
field descriptors. If is omitted, the repeat count is assumed to be 1.
fd is a repeatable edit descriptor or a field descriptor.
ed is a nonrepeatable edit descriptor.
fs is a format group and has the same form as a complete format specification except the

flist must be non—empty (it must contain at least one format specifier).
The comma used to separate the format specifidlistican be omitted as follows:

* Between @ edit descriptor and immediately following BnE, D, orG edit descriptor (see “P Edit
Descriptor™).

« Before or after a slash edit descriptor (see “Slash Editing”).

« Before or after a colon edit descriptor (see “Colon Descriptor™).

Descriptors

Some descriptors can be repeated, others cannot. The repeatable descriptors are
Iw[.m] Zw.m] Ew.d[Ee] Gw.d[Ee€] Aw]
owl.m] Fw.d Dw.d Lw Q

Fortran 77 Language Reference Manual — Chapter 9, Format Specification — 2

where

wande are nonzero, unsigned integer constants.

d andm are unsigned integer constants.

These descriptors are described in the respective section.

The nonrepeatable descriptors are
/ kP TRc SS nHh... $
Tc S BN h...’
nX TLc SP BZ "h..."
where
n andc are nonzero, unsigned integer constants.
k is an optionally signed integer constant.
h is one of the characters capable of representation by the processor.

Format Specifier Usage

Eachfield descriptorcorresponds to a particular data type 1/O list item:

Integer field descriptors lw, lwm, Ow, Zw
Real, double—precision, and complex field descripténs.d, Ew.d, EwdEe, Dw.d, Gw. d, Gw.dEe
Logical field descriptan Lw

Character and Hollerith field descriptar#, Aw

Ow, andZw are extensions to Fortran 77.

The

terms, c, n, d, m, eandw must all be unsigned integer constants, and, additionatlyn, e andw

must be nonzerdxis an optionally signed integer constant. Descriptions of these list items are given in the
sections that describe the individual field descriptors.

The

repeat specifigrcan be used only with theO, Z, F, E, D, G, L, andA field descriptors and with

format groups.

Thed is required in th&, E, D, andG field descriptorskEeis optional in th& andG field descriptors and
invalid in the others.

Use

of named constants anywhere in a format specification is not allowed.

Table 9-Tontains an alphabetical summary of the field and edit descriptors.

Table 9-1 Summary of Field and Edit Descriptors

Form

Effect

Alw]
BN

BZ

Transfers character or Hollerith values

Specifies that embedded and trailing blanks in a numeric input field are
to be ignored

Specifies that embedded and trailing blanks in a numeric input field are

Fortran 77 Language Reference Manual — Chapter 9, Format Specification — 3

Dw.d
Ew.dEq
Fw.d
Gw.d

nHc...c

w{.m
Lw
Ow[.m|
kP

SP
SS

Tc
TLc
TRc
nX

2. m

/
$

to be treated as zeros
Transfers real values (D exponent field indicator)
Transfers real values (E exponent field indicator)
Transfers real values

Transfers real values: on input, acts like F descriptor; on output, acts like
E or F descriptor, depending on the magnitude of the value

Transfers values between H edit descriptor and an external (butput
only)
Transfers decimal integer values

Transfers logical values

Transfers octal integer values

Scale factor for F, E, D, and G descriptors

Restores the default specification for SP and SS

Writes plus characters (+) for positive values in humeric output fields

Suppresses plus characters (+) for positive values in numeric output
fields

Specifies positional tabulation

Specifies relative tabulation (left)

Specifies relative tabulation (right)

Specifies thatcolumn positions are to be skipped

Transfers hexadecimal integer values

Terminates format control if the I/O list is exhausted

Record terminator

Specifies suppression of line terminator on output (ignored on input)

Each of the field descriptors described Tablei®discussed in detail in the following sections.

Variable Format Expressions

Variable format expressions provide a means for substituting run—time expressions for the field width and
other parameters of the field and edit descriptors of the statement. Any expression can be enclosed in
angle brackets (<>) and used as an integer constant would be used in the same situation. This facility is
not available for anything other than a compile-tH@&MAT statement.

Here is an example that uses a variable format expression:
program VariableExample
character*12 greeting
greeting = 'Good Morning!’
do1101=1, 12
write (*,115) (greeting)
115 format (A<I>)
110 continue

end

In the above example, the field descriptor for greeting has the fAmnaherew is a variable width
specifier (initially set to 1) for theolist itemgreeting In twelve successiW/RITE operations] is

Fortran 77 Language Reference Manual — Chapter 9, Format Specification — 4

incremented by 1 to produce the following output:

G

Go

Goo

Good

Good

Good M
Good Mo
Good Mor
Good Morn
Good Morni
Good Mornin
Good Morning

The following rules apply to variable format expressions:
< Functions calls, references to dummy, and any valid Fortran expression can be specified.
* Non-integer data types are converted to integers before processing.

e The same restrictions on size that apply to any other format specifier also apply to the value of a
variable format expression.

« Run-time formats cannot use variable format descriptions.

« If the value of a variable changes duringBAD or WRITE operation, the new value is used the
next time it is referenced in an 1/O operation.

General Rules for Using FORMAT

Becaus&ORMAT allowsexactspecification of input and output format, it is necessarily complex. Some
guidelines to its correct usage are outlined below.

« AFORMAT statement must always be labeled.

* In afield descriptor such asM.m] or nX, the terms, w, andn must be unsigned integer constants
greater than zero. The termmust be an unsigned integer constant whose value is greater than or
equal to zero; it cannot be a symbolic name of a constant. The repeat caube omitted.

« In afield descriptor such &sv.d, the terrd must be an unsigned integer constdmhust be
specified withF, E, D, andG field descriptors, even if is zero. The decimal point is also required.
Bothw andd must be specified. In a field descriptor suclkasiEe, the terme must also be an
unsigned, nonzero integer constant.

* In anH edit descriptor such asicl c2\ .\ ¢ subn exactlyn characters must follow thé Any
character in the processor character set can be used in this edit descriptor.

* In a scale factor of the foriP, k must be an optionally signed integer constant. The scale factor
affects thd-, E, D, andG field descriptors only. Once a scale factor is specified, it applies to all
subsequent real field descriptors in that format specification until another scale factor kppesirs;

Fortran 77 Language Reference Manual — Chapter 9, Format Specification — 5

be zero@P) to reinstate a scale factor of zero. A scale fact6Pa$ initially in effect at the start of
execution of each I/O statement.

No repeat countis permitted irBN, BZ, S SSSP H, X, T, TR, TL, :,/, $,’ descriptors unless these
descriptors are enclosed in parentheses and treated as a format group.

If the associated I/O statement contains an 1/O list, the format specification must contain atl|east one
O,Z,F,E, D, G, L, orA field descriptor.

A format specification in a character variable, character substring reference, character array element,
character array, or character expression must be constructed in the same way as a format
specification in & ORMAT statement, including the opening and closing parentheses. Leading

blanks are permitted, and any characters following the closing parenthesis are ignored.

The first character in an output record generally contains carriage control information. See*Output
Rules Summary” and “Carriage Control”.

A slash {) is both a format specifier list separator and a record terminator. See “Slash Editing” for
details.

During data transfers, the format specification is scanned from left to right. A repeat, ¢odirgnt
of a field descriptor or group of field descriptors enclosed in parentheses causes that descriptor or
group of descriptors to be repeatetefore left to right scanning is continued.

Input Rules Summary

Guidelines that apply specifically to input are

A minus sign (-) must precede a negative value in an external field; a plus sign (+) is optional before
a positive value.

An external field unddrfield descriptor control must be in the form of an optionally signed integer
constant, except that leading blanks are ignored and the interpretation of embedded or trailing blanks
is determined by a combination of dlANK = specifier and anBN or BZ blank control that is

currently in effect (see “BN Edit Descriptor” and “BZ Edit Descriptor”).

An external field undéef, E, D, orG field descriptor control must be in the form of an optionally
signed integer constant or a real constant, except that leading blanks are ignored and the
interpretation of embedded or trailing blanks is determined by a combinationBif ANYK =
specifier and anBN or BZ blank control that is currently in effect (see “BN Edit Descriptor” and
“BZ Edit Descriptor”).

If an external field contains a decimal point, the actual size of the fractional part of the field, as
indicated by that decimal point, overrides thepecification of the corresponding real field
descriptor.

If an external field contains an exponent, the current scale t&ct@scriptor has no effect for the
conversion of that field.

The format specification together with the input list must not attempt to read beyond the end of a

Fortran 77 Language Reference Manual — Chapter 9, Format Specification — 6

record.

Output Rules Summary
Guidelines that apply specifically to output are

< A format specification cannot specify more output characters than the value in the record length
specifier (see “OPEN” of Chapter 8 for details). For example, a line printer record might be limited
to no more than 133 characters, including the carriage—control character.

« The field-width specificatiom, and exponent digite, must be large enough to accommodate all
characters that the data transfer can generate, including an algebraic sign, decimal point, and
exponent. For example, the field width specification i dield descriptor should be large enough
to containd + 6 characters at +e+ 4 characters. The first character of a record of a file intended to
be printed is typically used for carriage control; it is not printed. The first character of such a record
should be a space, 0, 1, or +. (See “Carriage Control”.)

Field and Edit Descriptors

The format specifiers in a format specification consist of field, or repeatable, descriptors and other
nonrepeatable edit descriptors.

On input, the field descriptors specify what type of data items are to be expected in the external field so
that data item values can be properly transferred to their internal (processor) representations.

On output, the field descriptors specify what type of data items should be written to the external field.

On input and output, the other nonrepeatable edit descriptors position the processor pointer in the external
field so that data items will be transferred properly. For instance, edit descriptors can specify that lines or
positions in the external field be skipped or that data items can be repeatedly read (on input) or written (on
output).

Field Descriptor Reference

This section contains an overview of the numeric field descripto;<, F, E, D, andG. It also describes
theP edit descriptor and the A, H, Q, and character edit descriptors.

Numeric Field Descriptors

Thel, O, Z, F, E, D, andG field descriptors are used for numeric editing. This section also descriBes the
edit descriptor, which is a scale factor, that alters the efféGtEyfD, andG field descriptors.

Unless otherwise indicated, the following rules apply:

« Oninput, these numeric field descriptors ignore leading blanks in the external fi&d. édi
descriptor is in effect, embedded and trailing blanks are treated as zeros; oth@Wiedita
descriptor is in effect, and all embedded and trailing blanks are ignored.E=AtloeBN is initially
in effect at the beginning of the input statement depending BLIANK = specified (see “OPEN”
). The default i8N.

Fortran 77 Language Reference Manual — Chapter 9, Format Specification — 7

e A plus sign (+) is produced on output onhBPis in effect; however, a minus sign (-) is produced
where applicable. When computing the field width for numeric descriptors, one character should be
allowed for the sign, whether it is produced or not.

e For input withF, E, D, andG descriptors, a decimal point in the input field override®the
specification, and an explicit exponent in the input field overrides the current scale factor.

« For output, fields are right justified. If the field width is too small to represent all required characters,
asterisks are produced. This includes significant digits, sign, decimal point, and exponent.

Default Field Descriptor Parameters

You can optionally specify a field—width valwe d, ande) for thel, O, Z, L, F, E, D, G, andA field
descriptors. If you do not specify a value, the default values shown in Talap@y-2The length of the
I/0O variable determines the lengttor theA field descriptor.

Table 9-2 Default Field Descriptors

Descriptor Field Type w d e
1,0,2 BYTE 7

1,0,Z INTEGER*2, LOGICAL*2

1,0,2 INTEGER*4, LOGICAL*4 12

0,z REAL*4 12

0,z REAL*8 23

0,z REAL*16 44

L LOGICAL 2

F.E,G,D REAL, COMPLEX*8 15

F.E,G,D REAL*8, COMPLEX*16 25 16
F.E,G,D REAL*16 42 33 3
A LOGICAL*1 1

A LOGICAL*2, INTEGER*2 2

A LOGICAL*4, INTEGER*4 4

A REAL*4, COMPLEX*8 4

A REAL*8, COMPLEX*16 8

A REAL*26 16

A CHARACTER*n n

| Field Descriptor

Thel field descriptor is used for conversion between an internal integer data item and an external decimal
integer. It has the form

Iw. m|
where

w is a nonzero, unsigned integer constant denoting the size of the external field,
including blanks and a sign, if necessary. A minus sign (=) is always printed on output

Fortran 77 Language Reference Manual — Chapter 9, Format Specification — 8

if the number is negative. If the number is positive, a plus sign (+) is printed only if
SP is in effect.

m is an unsigned integer constant denoting the minimum number of digits required on
output.mis ignored on input. The value mfmust not exceed, if mis omitted, a
value of 1 is assumed.

In an input statement, théeld descriptor reads a field wfcharacters from the record, interprets it as an
integer constant, and assigns the integer value to the corresponding /O list item. The corresponding I/O
list element must be of tHTEGER or LOGICAL data type. The external data must have the form of

an integer constant; it must not contain a decimal point or exponent.

A LOGICAL data type is displayed as either the value 0 (false) or 1 (true).

If the first nonblank character of the external field is a minus sign, the field is treated as a negative value.
If the first nonblank character is a plus sign, or if no sign appears in the field, the field is treated as a
positive value. An all-blank field is treated as a value of zero.

Table 9-8ontains input examples.

Table 9-31 Field Input Examples

Format External Field Internal Value
i4 3244 3244

i3 -15 -15

i9 213 213

In an output statement, théeld descriptor constructs an integer constant representing the value of the
corresponding I/O list item and writes it to the right—justified record in an external field w characters long.
If the value does not fill the field, leading blanks are inserted; if the value exceeds the field width, the
entire field is filled with asterisks. If the value of the list item is negative, the field will have a minus sign
as its left most, nonblank character. The termust therefore be large enough to provide for a minus

sign, when necessary.nfis present, the external field consists of at lredigits, with leading zeros, if
necessary.

If mis zero, and the internal representation is zero, the external field is filled with blanks.

Table 9—-£ontains output examples.
Table 9-41 Field Output Examples

Format Internal Value External Field
13 311 311

i4 -311 -311

i5 417 417

i2 7782 *x

i3 -213 ok

i4.2 1 01

i4.4 1 0001

i4.0 1

Fortran 77 Language Reference Manual — Chapter 9, Format Specification — 9

O Field Descriptor

The O field descriptor transfers data values and converts them to octal form. It has the form

o

where

w is a nonzero, unsigned integer constant denoting the size of the external field,
including blanks and a sign, if necessary. A minus sign (=) is always printed on output
if the number is negative. If the number is positive, a plus sign (+) is printed only if
SPis in effect.

m is an unsigned integer constant denoting the minimum number of digits required on

output.mis ignored on input. The value mfmust not exceed; if mis omitted, a
value of 1 is assumed.

This repeatable descriptor interprets and assigns data in the same wadyfiatdthescriptor, except that

the external field represents aectal number constructed with the digits O through 7. On inpBZ i in

effect, embedded and trailing blanks in the field are treated as zeros; otherwise, blanks are ignored. On
output,S SP, andSSdo not apply.

In an input statement, the field is terminated when a non-octal digit is encountered. Fortran 77 treats
embedded and trailing blanks as zeros.

In an input statement, tiifield descriptor reads characters from the record; the input field must have:
» optional leading blanks
e an optional plus or minus sign

« asequence of octal digits (0 through 7)

A field that is entirely blank is treated as the value zero.

Table 9-%ontains examples & field input valuesBN is assumed in effect, and internal values are
expressed in decimal (base 10).

Table 9-50 Field Input Examples

Format External Field Internal Value
(INTEGER*4)

020 =77 -63

020 1234 668

020 177777 65535

020 100000 32768

In an output statement, tRefield descriptor constructs an octal number representing the unsigned value
of the corresponding I/O list element as follows:

« The number is right justified with leading zeros inserted (if necessary). Fortran 77 inserts leading
blanks.

Fortran 77 Language Reference Manual — Chapter 9, Format Specification — 10

« If wis insufficient to contain all the digits necessary to represent the unsigned value of the output list
item, then the entire field is filled with asterisks.

Table 9—-@ists examples oD field output.
Table 9-6 O Field Output Examples

Format Internal Value External Field
(INTEGER*4)

020.2 3 03

020.2 -1 377777777

03 -1 Fokk

020.2 63 77

020.2 -2 37777777776

Z Field Descriptor

TheZ field descriptor transfers data values and converts them to hexadecimal form. It has the form

2w m

where

w is a nonzero, unsigned integer constant denoting the size of the external field.

m is an unsigned integer constant denoting the minimum number of digits required on

output.mis ignored on input. The value mfmust not exceed, if mis omitted, a
value of 1 is assumed.

This repeatable descriptor interprets and assigns data in the same wadyfiatdtescriptor, except that
the external field represents a hexadecimal number constructed with the digits O through 9 and the letters
A through F. On output, the output list item is interpreted as an unsigned integer value.

In an input statement, tifield descriptor reads characters from the record. After embedded and
trailing blanks are converted to zeros or ignored, as applicable, the input field must have

» optional leading blanks
e an optional plus or minus sign

» asequence of hexadecimal digits (O through 9, A through F)

A field that is entirely blank is given a value of zero.

Table 9-Tists examples f field input.BN is assumed in effect, and internal values are expressed in
decimal (base 10).

Table 9-7Z Field Input Examples

Format External Field Internal Value
(INTEGER*4)

Z10 —ff —-255

z10 1234 4660

z10 ffff 65535

Fortran 77 Language Reference Manual — Chapter 9, Format Specification — 11

z10 8000 32768

Table 9-8sts examples of field output.
Table 9-8 Z Field Output Examples

Format Internal Value External Field
(INTEGER*4)

z10.2 3 " 03"

z10.2 -1 " ffeee"

z10.2 63 " 3f"

z10.2 -2 " ffffffe”

F Field Descriptor

TheF field descriptor transfers real values. It has the form

Fw. d

where

w is a nonzero, unsigned integer constant denoting field width.

d is an unsigned integer constant denoting the number of digits in the fractional part.

The corresponding 1/O list element must be of ffg#\L, DOUBLEPRECISION, orCOMPLEX .

In an input statement, thefield descriptor reads a field wfcharacters from the record and, after

appropriate editing of leading, trailing, and embedded blanks, interprets it as an integer or a real constant.
It then assigns the real value to the corresponding 1/O list element. (Refer to Chapter 2, "Constants and
Data Structures," for more information.) If the external field contains an exponent, the letter E can be
omitted as long as the value of the exponent is a signed integer. If the first nonblank character of the
external field is a minus sign, the field is treated as a negative value. If the first nonblank character is a
plus sign, or if no sign appears in the field, the field is treated as a positive value. An all-blank field is
given a value of zero.

If the field contains neither a decimal point nor an exponent, it is treated as a real number in which the

right mostd digits are to the right of the decimal point, with leading zeros assumed if necessary. If the

field contains an explicit decimal point, the location of that decimal point overrides the location specified

by the value ofi in the field descriptor. If the field contains a real exponent, the effect of any associated
scale factokP (see Scale Factor) is suppressed, and the real exponent is used to establish the magnitude of
the value in the input field before it is assigned to the list element.

Table 9-9rovides examples &ffield input.

Table 9-9F Field Input Examples

Format External Field Internal Value

8.5 123456789 0.12345678E+03
8.5 -1234.567 —0.123456E+04
8.5 12.34e+2 0.1234E+02

F5.2 1234567.89 0.12345E+03

Fortran 77 Language Reference Manual — Chapter 9, Format Specification — 12

In an output statement, tRefield descriptor constructs a basic real constant representing the value of the
corresponding I/O list element, roundeditdecimal positions, and writes it to the record right—justified
in an external fielav characters long.

The termw must be large enough to include:
e aminus sign for a negative value or a plus sign (v8feis in effect) for a positive value
« the decimal point

« ddigits to the right of the decimal

If wis insufficiently large, the entire field width is filled with asterisks. Thereferaust be >d + 2.

Table 9-1@rovides examples &ffield output.
Table 9-10F Field Output Examples

Format Internal Value External Field
F8.5 .12345678E+01 1.23457
9.3 .87654321E+04 8765.432
F2.1 .2531E+02 *x

f10.4 .1234567E+02 12.3457
5.2 .123456E+03 Fhkkkk
F5.2 -.4E+00 -0.40

E Field Descriptor

TheE field descriptor transfers real values in exponential form. It has the form

Ew. d[E ¢

where

w is a nonzero, unsigned integer constant denoting field width.

d is an unsigned integer constant denoting the number of digits in the fractional part.

e is a nonzero, unsigned integer constant denoting the number of digits in the exponent

part. Thee has no effect on input.
The corresponding I/O list element must b&&AL, DOUBLEPRECISION, orCOMPLEX data type.

In an input statement, tikefield descriptor interprets and assigns data in exactly the same way as the
field descriptor.

Table 9-1provides examples & field input.
Table 9-11E Field Output Examples

Format External Field Internal Value

e9.3 " 654321E3" .654321E+06
el2.4 " 1234.56E-6" .123456E-02
el5.3 "12.3456789" .123456789E+02

Fortran 77 Language Reference Manual — Chapter 9, Format Specification — 13

el2.5 "123.4567d+10" .1234567E+13

In Table 9-11, the field descriptor treats tHe exponent field indicator the same asEaexponent
indicator.

In an output statement, tBdield descriptor constructs a real constant representing the value of the
corresponding I/O list element, roundeditdecimal digits, and writes it to the right—justified record in an
external fieldwv characters long. If the value does not fill the field, leading spaces are inserted; if the value
exceeds the field width, the entire field is filled with asterisks.

When ark field descriptor is used, data output is transferred in a standard form. This form consists of
* minus sign for a negative value or a plus sign (w&iis in effect) for a positive value
» digits to the left of the decimal point, if any, or an optional zero
» decimal point
< ddigits to the right of the decimal point

« ane+ 2—-character exponent or a 4—character exponent

The exponent has one of the following forms:

Ew.d E +nnor E nnif the value of the exponent is in the range of -99 to +99
Ew.d +nnnor-nnnif the value of the exponent is <= -99 or
<= +99
Ew.dEe E +nl n2..nsubeorE- nl1 n2..n sub ewherenl n2.. neis the magnitude of the

exponent with leading zeros, if necessary.

The exponent field—width specification is optional; if it is omitted, the exponent part is as shown above. If
the exponent value is too large to be output with the given easeshown in the third form above, the
entire field is filled with asterisks.

The termw must be large enough to include

« A minus sign when necessary (plus signs wlers in effect)

« All significant digits to the left of the decimal point

e A decimal point

« ddigits to the right of the decimal point

e The exponent

Given these limitations and assuming adit descriptor is in effealyis \xb3d+ 7, or \xb3d+e+ 5 ife
is present.

Table 9-1provides examples & field output.
Table 9-12E Field Output Examples

Format Internal Value External Field

Fortran 77 Language Reference Manual — Chapter 9, Format Specification — 14

E9.2 .987654321E+06 " .99E+06"

el2.5 .987654321E+06 " .98765E+06"
el2.3 .69E-5 " .690E-05"

e10.3 -.5555E+00 " - 556E+00"
e5.3 7214E+02 Rl

el4.5E4 -.1001E+01 "-.10010E+0001"
el4.3E6 .123e-06 " .123E-000003"

D Field Descriptor

TheD field descriptor transfers real values in exponential form. It has the form

Dw. d

where

w is a nonzero, unsigned integer constant denoting field width.

d is an unsigned integer constant denoting the number of digits in the fractional part.

The corresponding I/O list element must b&&AL, DOUBLEPRECISION, orCOMPLEX data type.

In an input statement, tiefield descriptor interprets and assigns data in exactly the same way as the
field descriptor.

Table 9-1provides examples @f field input.
Table 9-13D Field Input Examples

Format External Field Internal Value

d10.2 "12345 " .12345E+03

d10.2 "123.45" .12345E+03

d15.3 "123.4567891D+04" .1234567891E+07

In an output statement, tBefield descriptor is the same as théeld descriptor, except tH2 exponent
field indicator replaces tHeindicator.

Table 9-14rovides examples @f field output.
Table 9-14D Field Output Examples

Format Internal Value External Field

di4.3 123d - 04 ".,123D - 04"

d23.12 123456789123d + 04 ".123456789123D + 04"
d95 14D + Ol Tkkkkkkkkkx!!

G Field Descriptor

A G field descriptor is used for the conversion and editing of real data when the magnitude of the data is
unknown. On output, th@ field descriptor produces a field as do Fher E field descriptors, depending

on the value. On input, tti&field descriptor interprets and assigns data in exactly the same wajF as the
field descriptor. It has the form

Fortran 77 Language Reference Manual — Chapter 9, Format Specification — 15

an.dE ¢

where

w is a nonzero, unsigned integer constant denoting field width.

d is an unsigned integer constant denoting the number of digits in the basic value part.
e is a nonzero, unsigned integer constant denoting the number of digits in the exponent

part.
The corresponding 1/O list element must b&&AL, DOUBLEPRECISION, orCOMPLEX data type.

In an input statement, tiefield descriptor interprets and assigns data in exactly the same way as the
field descriptor.

In an output statement, tlefield descriptor constructs a real constant representing the value of the
corresponding I/O list element roundeditdecimal digits and writes it to the right—justified record in an
external fieldv characters long. The form in which the value is written is a function of the magnitude of
the valuam, as described in Table 9+ the tablen is 4 ifEe was omitted from th& field descriptor;
otherwisen ise + 2.

Table 9-18lustrates the effect of data magnitude®format conventions.

Table 9-15Effect of Data Magnitude on G Format Conventions

Data Magnitude Effective Format
m<0.1 Bv.d[Eq
0.1\xb2 m<1.0 Fg—n.d, n (")
1.0\xb2 m<10.0 M—n.(d-1) (")
10 d-2\xb2 m < 10d-1 RN ()
10 d-1\xb2 m<10d R(En.0n ()

m \xb3 10d w.dEq

The termw must be large enough to include
« A minus sign for a negative value or a plus sign (WhBrs in effect) for a positive value
e A decimal point
« ddigits in the basic value part

« Either a 4—character et 2—character exponent part

Given these limitationsy must therefore be \xb@8+ 7 or \xb3d + e+ 5.

Table 9-1@rovides examples @ field output.
Table 9-16G Field Output Examples

Format Internal Value External Field
g13.6 .1234567E-01 ".1234567E-01"
g13.6 -.12345678E00 " —-.123457"

Fortran 77 Language Reference Manual — Chapter 9, Format Specification — 16

g13.6 .123456789E+01 "1.23457"

g13.6 .1234567890E+02 " 12.3457"

g13.6 .12345678901E+03 "123.457"

g13.6 —-.123456789012E+04 " -1234.57"
g13.6 .1234567890123E+05 "12345.7"
g13.6 .12345678901234E+06 " 123457."
g13.6 -.123456789012345E+07 " —.123457E+07"

For comparison, the examples in Table QiskErthe same values with an equivakefield descriptor.

Table 9-17 Field Comparison Examples

Format Internal Value External Field

f13.6 .1234567E-01 ".012346"

f13.6 —-.12345678E00 " -.123457"

f13.6 .123456789E+01 " 1.234568"

f13.6 .1234567890E+02 " 12.345679"
f13.6 .12345678901E+03 " 123.456789"
f13.6 —-.123456789012E+04 " -1234.567890"
f13.6 .1234567890123E+05 " 12345.678901"
f13.6 .12345678901234E+06 "123456.789012"
F13.6 —-.123456789012345E+07 Rk

P Edit Descriptor

TheP edit descriptor specifiesszale factoand has the form

kP

wherek is an optionally signed integer constant calledstizde factor

A P edit descriptor can appear anywhere in a format specification but must precede the first field
descriptor that is to be associated with it. For example

kPFw.d kPEw.d kPD w.d kPGw.d

The value ok must not be greater thdnrt 1, wheral is the number of digits in tHéw.d, Dw.d, orGw.d
output fields.

Scale Factor
The scale factok, determines the appropriate editing as follows:

« For input withF, E, D, andG editing (provided there is no exponent in the field) Rrditput
editing, the magnitude represented by the external field equals the magnitude of the internal value
multiplied by 10k.

< For input withF, E, D, andG editing containing a real exponent, the scale factor has no effect.

« For output withE andD editing, the basic value part is multiplied by 10k and the real exponent is
reduced by

Fortran 77 Language Reference Manual — Chapter 9, Format Specification — 17

« For output withG editing, the scale factor has no effect unless the data to be edited is outside the
range that permits editing. If the use dE editing is required, the effect of the scale factor is the
same ag output editing. (See Real Type in Chapter 2.)

On input, if no exponent is given, the scale factor in any of the above field descriptors multiplies the data
by 10 Kand assigns it to the corresponding I/O list element. For examhes@al® factor multiplies an

input value by .01. A PXcale factor multiplies an input value by 100. However, if the external field
contains an explicit exponent, the scale factor has no effect. Tablgi®ed 8&xamples of scale factors.

Table 9-18Scale Factor Examples

Format External Field Internal Value

3pel0.5 " 37.614" .37614E-01
3pel0.5 " 37.614E2" .37614E+04
-3pel0.5 " 37.614" .37614e+05

On output, the effect of the scale factor depends on the type of field descriptor associated with it.

For theF field descriptor, the value of the 1/O list element is multiplied by 10k before transfer to the
external record: a positive scale factor moves the decimal point to the right; a negative scale factor moves
the decimal point to the left. The value represented is 10k multiplied by the internal value.

For output with th& or D field descriptor, the basic real constant part of the external field is multiplied
by 10k and the exponent is reducedbVhe value represented is unchanged. A positive scale factor
moves the decimal point to the right and decreases the exponent; a negative scale factor moves the
decimal point to the left and increases the exponent. In summation,

k>0 moves the decimal poiktigits to the right.
k<0 moves the decimal poiktigits to the left.
k=0 leaves the decimal point unchanged.

Table 9-19rovides scale format output examples.

Table 9-19Scale Format Output Examples

Format Internal Value External Field
1pel2.3 —-.270139E+03 "2.701E+0 2"
1pel2.2 —270139E+03 " 2.70E+02"
-1pel2.2 -.270139E+03 " 0.03E+04"

On output, the effect of the scale factor for @&eld descriptor is suspended if the magnitude of the
output data is within the range permittiRgditing because th@ field descriptor supplies its own scaling
function. TheG field descriptor functions as &tfield descriptor if the magnitude of the data value is
outside its range. In this case, the scale factor has the same effedt &slthdescriptor.

On output undeF field descriptor control, a scale factor actually alters the magnitude of the value
represented, multiplying or dividing it by ten. On output, a scale factor &n@grorG field descriptor
control merely alters the form in which the value is represented.

If you do not specify a scale factor with a field descriptor, a scale factor of zero is assumed at the

Fortran 77 Language Reference Manual — Chapter 9, Format Specification — 18

beginning of the execution of the statement. Once a scale factor is specified, it applies to all sipsequent
E, D, andG field descriptors in the same format specification, unless another scale factor appears. A scale
factor of zero can be reinstated only with an expRapecification.

L Edit Descriptor

ThelL edit descriptor is used for logical data. The specified I/O list item must be afX@EAL . It
has the form

Lw
wherewis a nonzero, unsigned integer constant denoting field width.

For input, the field must consist of optional blanks followed by an optional decimal point follow&d by a
(for true) orF (for false). Thel or F can be followed by additional characters that have no effect. The
logical constantsTRUE. and.FALSE. are acceptable input forms.

For output, the field consists wof- 1 blanks followed by & or anF, for true and false, respectively,
according to the value of the internal data. Table 8h@@sL field examples.

Table 9-20L Field Examples

Format Internal Value External Field
L5 .TRUE. T
11 .FALSE. "F"

ThelL edit descriptor can also be used to process integer data items. All nonzero values are displayed as
.TRUE. and all zero values aSALSE..

A Edit Descriptor

TheA edit descriptor is used for editing character or Hollerith data. It has the form

AlwW

wherew is a nonzero, unsigned integer constant denoting the width, in number of characters, of the
external data field. ivis omitted, the size of the 1/O list item determines the lemngth

The corresponding /O list item can be any data type. If it is character data type, character data is
transmitted. If it is any other data type, Hollerith data is transmitted.

In an input statement, tiheedit descriptor reads a fieldwfcharacters from the record without

interpretation and assigns it to the corresponding I/O list item. The maximum number of characters that
can be stored depends on the size of the I/O list item. For character 1/O list elements, the size is the length
of the character variable, character substring reference, or character array element. For numeric and
logical 1/O list elements, the size depends on the data type, as shown in Table 9-21

Table 9-211/0 List Element Sizes

1/O List Element Maximum Number of Characters
LOGICAL*1 1
LOGICAL*2 2

Fortran 77 Language Reference Manual — Chapter 9, Format Specification — 19

LOGICAL*4 4
INTEGER*2 2
INTEGER*4 4
REAL*4 (REAL) 4
REAL*8 (DOUBLE PRECISION) 8
COMPLEX*8 (COMPLEX) 8
COMPLEX*16 (DOUBLE COMPLEX) 16

If wis greater than the maximum number of characters that can be stored in the corresponding I/O list
item, only the right most characters of the field are assigned to that element. The left most excess
characters are ignored.wfis less than the number of characters that can be stockdracters are

assigned to the list item and left justified, and trailing blanks are added to fill it to its maximum size.

Input Example

Table 9-28sts A field input examples.
Table 9-22 A Field Input Examples

Format External Field Internal Value Representation

A6 "FACE #" " (CHARACTER*1)
A6 "FACE #" "E #" (CHARACTER*3)
A6 "FACE #" "FACE #" (CHARACTER*6)
A6 "FACE #" "FACE #" (CHARACTER*8)
A6 "FACE #" " (LOGICAL*1)

A6 "FACE #" " (INTEGER*2)

A6 "FACE #" "CE #" (REAL*4)

A6 "FACE #" "FACE #" (REAL*8)

In an output statement, tAefield descriptor writes the contents of the corresponding 1/O list item to the
record as an external fieldcharacters long. i is greater than the list item size, the data appears in the
field, right justified, with leading blanks.Wis less than the list element, only the left nwesharacters
from the I/O list item are transferred.

Table 9-28sts A field output examples.
Table 9-23A Field Output Examples

Format Internal Value External Field
A6 "GREEK" " GREEK"
A6 "FRENCH" "FRENCH"
A6 "PORTUGUESE" "PORTUG"

If you omitw in anA field descriptor, a default value is supplied based on the data type of the I/O list
item. If it is character type, the default value is the length of the 1/O list element. If it is numeric or logical
data type, the default value is the maximum number of characters that can be stored in a variable of that
data type as described for input.

Repeat Counts

Fortran 77 Language Reference Manual — Chapter 9, Format Specification — 20

Thel, O, Z,F, E, D, G, L, andA field descriptors can be applied to a number of successive /O list items
by preceding the field descriptor with an unsigned integer constant, called the repeat count. For example,
4F5.2 is equivalent t65.2,F5.2,F5.2,F5.2.

Enclosing a group of field descriptors in parentheses, and preceding the enclosed group with a repeat
count, repeats the entire group. Thus, E8&}) is equivalent tt6F8.4)6,F8.4.
H Field Descriptor

TheH field descriptor is used for output of character literal data. It has the form:

nHxxx.. X

where

n is an unsigned integer constant denoting the number of characters that comprise the
character literal.

X comprises the character literal and consistsatfaracters, including blanks.

In an output statement, thiefield descriptor writes the characters following the letterfrom the field
descriptor to the record as an external fietdharacters long. Thd field descriptor does not correspond
to an output list item.

Table 9-24ists examples dfl edit description output.

Table 9-24H Edit Description Output Examples

Specification External Field
6HAb CdE Ab CdE
1H9 9

4H'a2’ ‘a2’

AnH field descriptor must not be encountered IREAD statement.

Character Edit Descriptor
A character edit descriptor has one of the following forms:

X1 X2 ... X
X1 X2 ... Xn

whereX1 X2... Xn are members of the Fortran character set forming a valid character literal. The width
of the output field is the number of characters contained in the character literal, excluding the enclosing
apostrophes or quotation marks. The character edit descriptor does not correspond to an output list item.
Within a character edit descriptor delimited by apostrophes, an apostrophe is represented by two
successive apostrophe characters. Within a character edit descriptor delimited by quotation marks, a
quotation mark is represented by two successive quotation mark characters.

Example

Table 9-28sts character edit description examples.

Fortran 77 Language Reference Manual — Chapter 9, Format Specification — 21

Table 9-25Character Edit Description Examples

Output Specification External Field

'sum =’ sum =

.sum = sum =

.don't don't

'here’”’s the answer’ here’s the answer
'he said, "yes" he said, "yes"

.he said, ""yes™ he said, "yes"

A character edit descriptor must not be encounteredRyAdD statement.

Use of quotation marks as a character edit descriptor is an enhancement to Fortran 77.

Q Edit Descriptor

TheQ edit descriptor is used to determine the number of characters remaining to be read from the current
input record. It has the form

Q

When aQ descriptor is encountered during the execution of an input statement, the corresponding input
list item must be type integer. Interpretation of@hedit descriptor causes the input list item to be

defined with a value that represents the number of character positions in the formatted record remaining
to be read. Therefore,dfis the character position within the current record of the next character to be
read and the record consistdesf characters, then the item is defined with the value

n=max(len- c+1,0)

If no characters have yet been read, therlen the length of the record. If all the characters of the
record have been readXlen), thennis zero.

TheQ edit descriptor must not be encountered during the execution of an output statement.

Input Example
The following is an example @ edit description input:

INTEGER N
CHARACTER LINE * 80
READ (5, 100) N, LINE (1:N)

100 FORMAT (Q, A)

Edit Descriptor Reference

After eachl, O, Z, F, E, D, G, L, A, H, or character edit descriptor is processed, the file is positioned after
the last character read or written in the current record.

TheX, T, TL, andTR descriptors specify the position at which the next character will be transmitted to or
from the record. They do not change any characters in the record already written or by themselves affect

Fortran 77 Language Reference Manual — Chapter 9, Format Specification — 22

the length of the record.

If characters are transmitted to positions at or after the position specified, By aTR, orX edit
descriptor, positions skipped and not previously filled are filled with blanks.

X Edit Descriptor

The X edit descriptor specifies a position forward (to the right) of the current position. It is used to skip
characters on the external medium for input and output. It has the form

nX

wheren is a nonzero, unsigned integer constant denoting the number of characters to be skipped.

T Edit Descriptor

TheT edit descriptor specifies an absolute position in an input or output record. It has the form:
Tn

wheren indicates that the next character transferred to or from the recorchib ttigaracter of the
record.

TL Edit Descriptor

TheTL edit descriptor specifies a position to the left of the current position. It has the form

TLn

wheren indicates that the next character to be transferred from or to the recoratischaracter to the
left of the current character. The valuenahust be greater than or equal to one.

If nis the current character position, then the first character in the record is specified.

TR Edit Descriptor

The TR edit descriptor specifies a position to the right of the current position. It has the form
TRn

wheren indicates that the next character to be transferred from or to a recordtls tharacter to the
right of the current character. The valueafiust be greater than or equal to one.

BN Edit Descriptor

TheBN edit descriptor causes the processor to ignore blank characters in a numeric input field and to right
justify the remaining characters, as though the blanks that were ignored were leading blanks. It has the
form

BN

TheBN descriptor affects only O, Z, F, E, D, andG editing and then only on input fields.

BZ Edit Descriptor

Fortran 77 Language Reference Manual — Chapter 9, Format Specification — 23

TheBZ edit descriptor causes the processor to treat all the embedded and trailing blank characters it
encounters within a numeric input field as zeros. It has the form:

BZ

TheBZ descriptor affects only O, Z, F, E, D, andG editing and then only on input fields.

SP Edit Descriptor

The SPedit descriptor specifies that a plus sign be inserted in any character position that normally
contains an optional plus sign and whose actual value is \xb3 0. It has the form

SP

The SPdescriptor affects only F, E, D, andG editing and then only on output fields.

SS Edit Descriptor

The SSedit descriptor specifies that a plus sign shaotde inserted in any character position that
normally contains an optional plus sign. It has the form

SS

The SSdescriptor affects only F, E, D, andG editing and then only on output fields.

S Edit Descriptor

The Sedit descriptor resets the option of inserting plus characters (+) in numeric output fields to the
processor default. It has the form

S

The Sdescriptor counters the action of either$or theSSdescriptor by restoring to the processor the
discretion of producing plus characters (+) on an optional basis. The defaBSprucessing; the
optional plus sign is not inserted whers in effect.

The Sdescriptor affects only F, E, D, andG editing and then only on output fields.

Colon Descriptor

The colon character (:) in a format specification terminates format control if no more items are in the I/O
list. The colon descriptor has no effect if I/O list items remain.

$ Edit Descriptor

The $ edit descriptor suppresses the terminal line—-mark character at the end of the current output record. It
has the form

$

The $ descriptor is nonrepeatable and is ignored when encountered during input operations.

Fortran 77 Language Reference Manual — Chapter 9, Format Specification — 24

Output Example

print 100, 'enter a number:’
100 format (1x, a, $)
read *, x

Complex Data Editing

A complex value consists of an ordered pair of real values.Af BnD, orG field descriptor is
encountered, and the next I/O list item is complex, then the descriptor is used to edit the real part of the
complex item. The next field descriptor is used to edit the imaginary part.

If an A field descriptor is encountered on input or output, and the next I/O list item is complex, then the
field descriptor is used to translate Hollerith data to or from the external field and the entire complex list
item. The real and imaginary parts together are treated as a single 1/O list item.

In an input statement with E, D, or G field descriptors in effect, the two successive fields are read and
assigned to a complex /O list element as its real and imaginary parts, respectively.

Table 9—-2@ontains examples of complex data editing input.

Table 9-26 Complex Data Editing Input Examples

Format External Field Internal Value
f8.5,f8.5 "1234567812345.67" (.12345678E+03,.1234567E+05)
f9.1,f9.3 "734.432E8123456789" (.734432E+11,.123456789E+06)

In an output statement wikh E, D, orG field descriptors in effect, the two parts of a complex value are
transferred under the control of successive field descriptors. The two parts are transferred consecutively,
without punctuation or spacing, unless the format specification states otherwise.

Table 9-2¢ontains examples of complex data editing output.

Table 9-27Complex Data Editing Output Examples

Format Internal Value External Field
2f8.5 (.23547188E+01,.3456732E+01) "2.35472 3.45673"
e9.2,",",e5.3 (.47587222E+05,.56123E+02) "0.48E+06, *****"

Carriage Control

A formatted record can contain a prescribed carriage—control character as the first character of the record.
The carriage—control character determines vertical spacing in printing witshRReAGECONTROL

keyword of theOPEN statement is set fORTRAN (as described in “OPEN” of Chapter 8,

"Input/Output Statements.") Table 9488 the carriage—control characters.

Table 9-28 Carriage—Control Characters

Character Effect on Spacing

Blank Single space

0 Double space

1 To first line of next page

Fortran 77 Language Reference Manual — Chapter 9, Format Specification — 25

+ No vertical spacing

Output starts at the beginning of the next line; carriage return at
the end of the line is suppressed

ASCII NUL Overprints with no advance; does not return to the left margin
after printing

The carriage—control character is not printed, and the remaining characters, if any, are printed on one line
beginning at the left margin. If there are no characters in the record, the vertical spacing is one line and no
characters will be printed in that line.

Slash Editing

A slash (/) placed in a format specification terminates input or output for the current record and initiates a
new record. For example

WRITE (6,40) K,L,M,N,O,P
40 FORMAT (316.6/16,2F8.4)

is equivalent to

WRITE (6,40) K,L,M
40 FORMAT (316.6)

WRITE (6,50) N,O,P
50 FORMAT (16,2F8.4)

On input from a sequential-access file, the current portion of the remaining record is skipped, a new
record is read, and the current position is set to the first character of the metasties in succession
causen - 1 records to be skipped.

On output to a file connected for sequential access, a new record is created and becomes the last and
current record of the file. Also,slashes in succession cansel blank lines to be generated.

Through the use of two or more successive slashes in a format specification, entire records can be skipped
for input and records containing no characters can be generated for output. If the file is an internal file, or
a file connected for direct access, skipped records are filled with blank characters on output.

n slashes at the beginning or end of a format specification resuskipped or blank records. On input
and output from a direct—access file, the record number is increased by one and the file is positioned at the
beginning of the record that has that record number. This record becomes the current record.

Interaction Between |/O List and Format

The beginning of formatted data transfer using a format specification initiates format control. Each action
of format control depends on information jointly provided by

» the next descriptor contained in the format specification

* the nextitem in the 1/O list, if one exists

If an I/O list specifies at least one list item, at least one repeatable descriptor must exist in the format
specification. Note that an empty format specification of the form () can be used only if no list items are

Fortran 77 Language Reference Manual — Chapter 9, Format Specification — 26

specified; in this case, one input record is skipped or one output record containing no characters is
written.

Except for a field descriptor preceded by a repeat specificagdnor a format specification preceded by

a repeat specification(flist), a format specification is interpreted from left to right (see “Repeat

Counts”). Note that an omitted repeat specification is treated the same as a repeat specification whose
value is one.

To each repeatable field descriptor interpreted in a format specification, there corresponds one item
specified by the 1/O list, except that a list item of type complex is treated as two real items ®HEN an

D, orG field descriptor is encountered. To e®IX, T, TL, TR, S SP, SS H, BN, BZ, slash (/), colon

(:), dollar sign ($), or character edit descriptor, there is no corresponding item specified by the I/O list, and
format control communicates information directly to the record.

Whenever format control encounters a repeatable edit descriptor in a format specification, it determines
whether there is another item in the 1/O list. If there is such an item, it transmits appropriately edited
information between the item and the record, and then format control proceeds. If there is no other item,
format control terminates.

If format control encounters the right most parenthesis of a complete format specification and no items
remain in the list, format control terminates. However, if there are more items in the list, the file is
positioned at the beginning of the next record, and format control then reverts to the beginning of the
format specification terminated by the last preceding right parenthesis ()). If there is no such preceding
right parenthesis ()), format control reverts to the first left parenthesis (() of the format specification. If

such a reversion occurs, the reused portion of the format specification must contain at least one repeatable
edit descriptor. If format control reverts to a parenthesis that is preceded by a repeat specification, the
repeat specification is reused. Reversion of format control, of itself, has no effect on the scale factor (see
“D Field Descriptor”) theS, SP, orSSedit descriptor sign control, or tB& or BZ edit descriptor blank

control.

List—Directed Formatting

List—directed formatting allows formatted input and output without specifying a format specification. An
asterisk (*) is used as a format identifier to invoke a list—directed format.

List—directed formatting can be applied to both internal and external files.

List—Directed Input

The characters in one or more list-directed records form a sequence of values and value separators. Each
value is either a constant, or a null value or has one of the following forms:

rc
r*

where

r is a nonzero, unsigned integer constant denoting the number of successive
appearances afor null values.

Fortran 77 Language Reference Manual — Chapter 9, Format Specification — 27

c is a constant.

Ther* form is equivalent to successive null values. Neither form can contain embedded blanks, except
where permitted within the constamt

Data values can be separated with one of the following value separators:
* A comma optionally preceded and followed by one or more contiguous blanks.

« Aslash (/) optionally preceded and followed by one or more contiguous blanks. A slash encountered
by a list-directed input statement ends the execution of the input statement after assignment of the
previous value, if any; any remaining list items are treated as if null values were supplied. A slash is
not used as a separator on output.

« One or more contiguous blanks between two constants or following the last constant. Blanks used in
the following manner are not treated as part of any value separator in a list-directed input record:

- blanks within a character constant
- embedded blanks surrounding the real or imaginary part of a complex constant

- leading blanks in the first record read by each execution of a list—directed input statement, unless
immediately followed by a slash or comma

The end of a record has the effect of a blank, except when it appears within a character constant. Two or
more consecutive blanks are treated as a single blank, unless they occur within a character constant.

There are three differences between the input forms acceptable to format specifiers for a data type and
those used for list—directed formatting. A data value must have the same type as the list item to which it
corresponds. Blanks are not interpreted as zeros. Embedded blanks are only allowed in constants of
character or complex type.

Rules governing input forms of list items for list—directed formatting are

« For data of type real or double precision, the input form is the same as a numeric inputField for
editing that has no fractional part, unless a decimal point appears within the field.

« For data of type complex, the input form consists of an ordered pair of numeric constants separated
by a comma and enclosed in a pair of parentheses. The first numeric constant is the real part of the
complex value, while the second constant is the imaginary part. Each of the constants representing
the real and imaginary parts may be preceded or followed by blanks. The end of a record may occur
between the real part and the comma or between the comma and the imaginary part.

« For data of type logical, the input form must not include either slashes or commas among the
optional characters allowed forediting.

« For data of type character, the input form is a character constant: a non empty string of characters
enclosed in apostrophes or quotation marks. When apostrophes are used as the character constant
delimiter, each apostrophe within the apostrophes is represented by a pair of apostrophes without an
intervening blank or end of record.

When quotation marks are used as the character constant delimiter, each quotation mark within the

Fortran 77 Language Reference Manual — Chapter 9, Format Specification — 28

guotation marks is represented by a pair of quotation marks without an intervening blank or end of
record. Character constants can be continued on as many records as needed. Constants are assigned
to list items as in character assignment statements.

A null value is specified by two successive value separators, Ioyftiven, or by not having any
characters before the first value separator in the first record read by the execution of the list-directed
statement. A null value has no effect on the corresponding list item. A single null value may
represent an entire complex constant but cannot be used as either the real or imaginary part alone.

You can specify commas as value separators in the input record when executing a formatted read of
non character variables. The commas override the field lengths in the input statement. For example,

(i10, f20.10,i4)
reads the following record correctly:

—-345,.05e-3,12

List-Directed Output

The form of the values produced is the same as that required for input, except as noted below:

Logical output constants afefor the value true ané for the value false.

Integer output constants are produced as fowadit descriptor, wheng depends on whether the
list item iSINTEGER*2 or INTEGER*4 type.

For complex constants, the end of a record will occur between the comma and the imaginary part
only if the entire constant is as long as, or longer than, an entire record.

Produced character constants are not delimited by apostrophes or quotation marks, are not preceded
or followed by a value separator, and have each internal apostrophe represented externally by one
apostrophe and each internal quotation mark represented by one quotation mark. A blank character
for carriage control is inserted at the beginning of a record containing the continuation of a character
constant.

Slashes and null values are not produced, but each record begins with a blank character to provide
carriage control if the record is printed.

Two noncharacter values in succession in the same record will be separated by a value separator of
one or more blanks. No value separator is produced before or after a character value.

Chapter 10
Statement Functions and Subprograms

This chapter contains the following subsections:

e "Overview"

» "Statement Functions"

* "Parameter Passing"

e "Function and Subroutine Subprograms"

* "FUNCTION"

 "SUBROUTINE"

« "ENTRY"

¢« "INCLUDE"

Statement functions and subprograms are program units that receive control when referenced or called by
a statement in a main program or another subprogram. A subprogram is either written by the user or

supplied with the Fortran compiler. This chapter discusses user—written subprograms; compiler—supplied
functions and subroutines are discussed in Appendix A, "Intrinsic Functions."

Overview
This chapter explains the syntax and rules for defining three types of program units:

« Statement functioreonsist of a single arithmetic statement defined within the main program unit or a
subprogram.

» Function subprogramesonsist of one or more statements defined external to the main program unit.
They are invoked when referenced as a primary in an expression contained in another program unit.

« Subroutine subprograntonsist of one or more program statements defined as external to the main
program unit. It is invoked when referenced iBALL statement (See Chapter 6, "Control
Statements") in another program unit.

This chapter also explains the syntax and rules fdeti¢CTION, SUBROUTINE, ENTRY, and
INCLUDE statements, that are used to specify function and subroutine subprograms.

Statement Functions

A statement function definition is similar in form to an arithmetic, logical, or character assignment
statement. The name of a statement function is local to the program unit in which it is defined. A
statement function definition must appear only after the specification statements and before the first
executable statement of the program unit in which it appears.

Defining a Statement Function

Fortran 77 Language Reference Manual — Chapter 10, Statement Functions and Subprograms - 1

A statement function statement has the form

fun(d[, d...])= e

where

fun is a symbolic name of the function.
d is a dummy argument.

e is an expression.

Each dummy argumedtis a variable name called a statement function dummy argument. The statement
function dummy argument list indicates the order, number, and type of arguments for the statement
function. All arguments need not have the same data type. A specific dummy argument may appear only
once in the list. A variable name that serves as a dummy argument can also be the name of a local variable
or common block in the same program unit.

Each primary of the expressiercan include

e constants

< symbolic names of constants

« variable references

» array element references

« library function references

» references to other statement functions

« function subprogram references

e dummy subprogram references

* an expression composed of the above forms and enclosed in parentheses

If a statement function dummy argument name is the same as the name of another entity, the appearance
of that name in the expression of a function is a reference to the statement function dummy argument. A

dummy argument that appears iIRBNCTION or SUBROUTINE statement may be referenced in the
expression of a function statement with the subprogram.

A dummy argument that appears inEMITRY statement may be referenced in the expression of the
statement function only if the dummy argument name appeafSUNETION, SUBROUTINE, or
ENTRY statement preceding the statement function definition.

Referencing a Statement Function

A statement function is referenced by using its name with actual arguments, if any, enclosed in
parentheses. The form of a statement function reference is

fun[exp, exg...])

where

Fortran 77 Language Reference Manual — Chapter 10, Statement Functions and Subprograms - 2

fun is a statement function name.

exp is an expression.

Operational Conventions and Restrictions

Expressions must agree in order, number, and type with the corresponding dummy arguments. An
expression can be any expression except a character expression involving concatenation in which the
length attribute of one of the operands is specified with an asterisk.

Execution of a statement function reference results in

« Evaluation of actual argumenesxf) that are expressions.

» Association of actual arguments with their corresponding dummy arguments.
< Evaluation of the expression e in the statement function definition.

« Type conversion of the resulting value to the data type of the function, if necessary. This value is
returned as the value of the statement function reference.

» A statement function can be referenced only in the program unit that contains its definition. A
statement function can reference another statement function that has been defined before the
referencing function but not one that is defined after the referencing function.

e A statement function name is local to the program unit and must not be used as the name of any other
entity in the program unit except the name of a common block.

e The symbolic name used to identify a statement function cannot appear as a symbolic name in any
specification statement except a type statement (to specify the type of the function) or as the name of
a common block in the same program unit.

¢ A dummy argument of a statement function must not be redefined or become undefined through a
function subprogram reference in the expression of a statement function.

« The symbolic name of a statement function cannot be an actual argument and must not appear in an
EXTERNAL statement.

« A statement function in a function subprogram cannot contain a function reference to the name of an
entry to the function subprogram.

« The length specification of a statement function dummy argument of type character must be an
integer constant.

Parameter Passing

Parameter passing involves function and subroutine arguments. This section explains the difference
between actual and dummy arguments. It also describes the Fortran extensions known as built-in
functions.

Arguments

Fortran 77 Language Reference Manual — Chapter 10, Statement Functions and Subprograms — 3

Dummy arguments are used in function subprograms, subroutine programs, and statement functions to
indicate the types of actual arguments and whether each argument is a single value, an array of values, a
subprogram, or a statement label. Dummy argument names must not aff @ ALENCE , DATA

, PARAMETER, SAVE, INTRINSIC , orCOMMON statements, except as common block names.

Dummy argument names must not be the same as the subprogram naldi¥¢€iMON ,

SUBROUTINE, ENTRY, or statement function statements in the same program unit.

Actual arguments are the items that are specified in the call to the function. Actual arguments are bound

to the corresponding dummy arguments when the subprogram call is reached. Actual arguments can
change with each call to the subprogram. Of course, the types of the paired actual argument and the
dummy argument must match. The types do not have to match if the actual argument is a subroutine name
or an alternate return specifier.

When a function or a subroutine reference is executed, an association is established between the
corresponding dummy and actual arguments. The first dummy argument becomes associated with the first
actual argument, the second dummy argument becomes associated with the second actual argument, and
S0 on.

An array can be passed to a function or subroutine as an actual argument if the corresponding dummy
argument is also an array declared DIBFIENSION or type statement but not irCOMMON

statement. The size of the array in the calling program unit must be smaller than or equal to the size of the
corresponding dummy array in the subprogram. The array in the function or subroutine can also have
adjustable dimensions.

Built—In Functions

Built—in functions provide communication with non—Fortran programs that require arguments passed in a
specific format. (See Chapter 3 of #artran 77 Programmer’s Guidfeor information about
communicating with programs written in the C and Pascal languages.)

Use the built-in functiof$VAL , %REF, and%DESCR along with arguments within an argument list.
The built-in functiof6LOC is intended for global use.

%VAL

The bulit-i6VAL function passes the argument as a 32-bit value; the function extends arguments
smaller than 32 bits to 32-bit signed values. The function has the following syntax:

%VAL(a)

wherea is an argument within an argument list.

%REF
The built-iREF function passes an argument by reference. It has the syntax
%REF@)

wherea is an argument within an argument list.

Fortran 77 Language Reference Manual — Chapter 10, Statement Functions and Subprograms - 4

%DESCR

The built-i6DESCR function has no functionality, but is included for compatibility with VAX Fortran.
It has the syntax

%DESCRY{)

wherea is an argument within an argument list.

%LOC
The built-ir#6LOC function returns a 32-bit run—time address of its argument. It has the syntax
%LOCE)

wherea is an argument whose address is to be returned.

Function and Subroutine Subprograms

A function subprogram consists oFBINCTION statement followed by a program body that terminates
with anEND statement. It has the following characteristics:

» defined external to the main program unit

« referenced as a primary in an expression contained in another program unit

» considered part of the calling program

A Fortran program can call a subroutine subprogram written in any language supported by the

RISCompiler System. (See Chapter 3 ofRbetran 77 Programmer’s Guidir information on writing
Fortran programs that interact with programs in other languages.)

A subroutine subprogram consists @WBROUTINE statement, followed by a program body that
terminates with aBND statement (See Chapter 6, "Control Statements") and is defined external to the
main program.

Referencing Functions and Subroutines

A function subprogram is referenced as a primary in an expression, while a subroutine subprogram is
referenced with EALL statement (See Chapter 6, "Control Statements") contained in another program.
Reference to a function subprogram has the form

fun(a, al...])
wherefunis a symbolic name of the function subprogramaaisdan actual argument.

If funis of type character, then its length must not have been specified with an asterisk (*) in the calling
subprogram.

You can write subroutines that call themselves either directly or through a chain of other subprograms if
the automatic storage of variables is in effect. Tagtomatic command line option (described in
Chapter 11, "Compiler Options"), by default, causes the automatic storage of variables.

Fortran 77 Language Reference Manual — Chapter 10, Statement Functions and Subprograms — 5

The actual arguments comprise an argument list and must agree in order, number, and type with the
corresponding dummy arguments in the referenced function or subroutine. An actual argument in a
function reference must be one of the following:

e an expression, except a character expression, involving concatenation of an operand whose length is
specified by an asterisk

e an array name
e anintrinsic function name
« an external function or subroutine name
e adummy function or subroutine name
* a Hollerith constant
An actual argument may be a dummy argument that appears in a dummy argument list within the
subprogram containing the reference.
The use of a dummy name allows actual names to be passed through several levels of program units.

If a Hollerith constant is used as an actual argumenCiAld. statement, the corresponding dummy
argument must not be a dummy array and must be of arithmetic or logical data type.

The same rules apply to the actual arguments in a subroutine reference, except that in addition to the
forms described above, the actual dummy argument of a subroutine may be an alternate return specifier.
An alternate return specifier has the form *s, wissehe statement label of an executable statement
appearing in the same program unit asAeL statement.

For example,
SUBROUTINE MAXX(A,B,*,*,C)

The actual argument list passed in@#_L must include alternate return arguments in the
corresponding positions of the form *s. The value specified for s must be the label of an executable
statement in the program unit that issued the call.

An actual argument can also be omitted by specifying only the comma delimiters without an argument in
between. In this case, the omitted argument is treated as if iAveke (0).

Note that the use of a subroutine name or an alternate return specifier as an actual argument is an
exception to the rule requiring agreement of type. If an external function or subroutine or dummy name is
used as an actual argument, the name must appeadE KT&IRNAL statement. If an intrinsic name is

used as an actual argument, the name must appeaNMRINSIC statement and must be one of those
listed in Appendix A, "Intrinsic Functions," as a specific name. It must not be one of the intrinsics for

type conversion, for choosing the largest or smallest value, or for lexical relationship.

Executing Functions and Subroutines
Execution of an reference to a function subprogram and subroutine subprogram results in

« evaluation of expressions that constitute actual arguments

Fortran 77 Language Reference Manual — Chapter 10, Statement Functions and Subprograms — 6

» association of actual arguments from the calling program unit with the corresponding dummy
arguments in the subprogram

« execution of the statements comprising the subprogram based on the execution control sequence of
the program unit

e return of program control to the calling program unit when eitiREBURN statement is
encountered or the execution control flows intoBEND statement

The name of a function subprogram must appear as a variable at least once in the subprogram and must be
defined at least once during each subprogram execution. Once the variable is defined, it may be

referenced elsewhere in the subprogram and become redefined. When program control is returned to the
calling program, this value is returned as the value of the function reference. If this variable is a character
variable with a length specified by an asterisk, it may not appear as an operand in a concatenation
operation but can be defined in an assignment statement.

A subroutine does not return an explicit value to the point of invocation in the calling program unit.
However, both the subroutine and the function can return values to the calling program unit by defining
their dummy arguments during execution.

FUNCTION

TheFUNCTION statement is the first statement of a function subprogram. It specifies the symbolic
name of the function and its type.

Syntax
[typ] FUNCTION fun[* len ([d[, d]...])

where
typ optionally specifies the data type of the function name, which determines the value
returned to the calling program. The following formstfgrare allowed:
INTEGER DOUBLE PRECISION LOGICAL
INTEGER*2 COMPLEX LOGICAL*1
INTEGER*4 COMPLEX*8 LOGICAL*2
REAL COMPLEX*16 LOGICAL*4
REAL*4 DOUBLE COMPLEX CHARACTER [*er]
REAL*8
fun is a symbolic name of the function subprogram in whiciHUBICTION statement
appears.
len specifies the length of the data type; fun must be a nonzero, unsigned constant. Do not
specifylenwhen the function is typ@HARACTER with an explicit length
following the keywordCHARACTER.
w is a dummy argument and can be a variable, array name, or dummy subprogram

Fortran 77 Language Reference Manual — Chapter 10, Statement Functions and Subprograms - 7

name.

Rules for Use
< AFUNCTION statement must appear only as the first statement of a function subprogram.

« The type specification may be omitted from ENCTION statement, and the function name may
be specified in a type statement in the same program unit. If neither of these options is used, the
function is implicitly typed.

e The symbolic name of a function is a global name and must not be the same as any other global or
local name, except a variable name, in the function subprogram.

« If the function type is specified in tHJNCTION statement, the function name must not appear in
a type statement.

« In the type specificatioBHARACTER, len can have any of the forms allowed iGldHARACTER
statement, except that an integer constant expression must not include the symbolic name of a
constant. If the name of the function is type character, then each entry name in the function
subprogram must be type character. If the length is declared as an asterisk, all such entries must have
a length declared with an asterisk.

« A function specified as a subprogram may be referenced within any other subprogram or in the main
program of the executable program.

Restrictions

« A function subprogram cannot contaiBlaOCK DATA , SUBROUTINE, orPROGRAM
statement.

« A function name cannot have its type explicitly specified more than once in a program unit.

e In afunction subprogram, a dummy argument name cannot appedE@ILAWVALENCE ,
PARAMETER, SAVE, INTRINSIC , DATA, orCOMMON statement, except as a common block
name.

« A character dummy argument with a length specified as an asterisk must not appear as an operand for
concatenation, except in a character assignment statement.

« The compiler system permits recursion if the automatic storage of variables is in effect. The
-automatic command line option (See Chapter 11, "Compiler Options,"), by default, causes the
automatic storage of variables.

SUBROUTINE
A SUBROUTINE statement must be the first statement of a subroutine subprogram.
Syntax

SUBROUTINEsul§([d[, d]...])]

Fortran 77 Language Reference Manual — Chapter 10, Statement Functions and Subprograms — 8

where
sub is a symbolic name of the subroutine program. unit

d is a dummy argument and may be a variable name, array name, dummy subprogram
name, or asterisk. The asterisk denotes an alternate return.

Rules for Use

A SUBROUTINE statement must be the first statement of a subroutine subprogram.

« If there are no dummy arguments, use either of the following forms:

SUBROUTINESsub
SUBROUTINESsuL)

e One or more dummy arguments can become defined or redefined to return results.

« The symbolic name of a subroutine is global and cannot be the same as any other global or local
name in the program unit.

« A CALL statement within the body of a subroutine may reference the subroutine itself (recursion) if
the automatic storage attribute is specified. See Chapter 4, "Specification Statements," for more
information.

Restrictions

« A subroutine subprogram cannot contaBL®OCK DATA , FUNCTION, orPROGRAM
statement.

* In a subroutine, a dummy argument name is local to the program unit and cannot appear in an
EQUIVALENCE , SAVE, INTRINSIC , DATA, orCOMMON statement, except as a common
block name.

« A character dummy argument whose length is specified as an asterisk cannot appear as an operand
for concatenation, except in a character assignment statement.

ENTRY

TheENTRY statement specifies a secondary entry point in a function or subroutine subprogram. It
allows a subprogram reference to begin with a particular executable statement within the function or
subroutine subprogram in which BB TRY statement appears.

Syntax
ENTRY er{([d[, d]..])]
where

en is a symbolic name of the entry point.

Fortran 77 Language Reference Manual — Chapter 10, Statement Functions and Subprograms — 9

d is a dummy argument.
If there are no dummy arguments, you can use the following forms:

ENTRY en
ENTRY en))

Method of Operation

EachENTRY statement in a function or subroutine provides an additional name you can use to invoke
that subprogram. When you invoke it with one of these names, it begins execution at the first executable
statement following the entry statement that provided the name.

Within a function, each of its names (the one provided biztHéCTION statement, plus the ones
provided by thé&ENTRY statements) acts like a variable. By the time the function returns, you must have
defined the function return value by assigning it to one of these variables.

If any of these variables is of type character, all must be of type character; otherwise, the variables need
not all have the same data type. Such variables are in effect equivalenced, and therefore

* You need not assign the return value to the name you used to invoke the function; instead, you can
assign it to any of the names of the same data type.

< If you assign the return value a name that does not have the same data type as the one you used to
invoke the function, then the return value becomes undefined.

Rules for Use

* TheENTRY statement may appear anywhere within a function subprogram affddNETION
statement or within a subroutine afte8EdBROUTINE statement.

e A subprogram can have one or mBIdTRY statements.
* The entry namenin a function subprogram can appear in a type statement.
< In afunction, a local variable with the same name as one of the entries can be referenced.

* A subprogram can call itself directly if the automatic storage of variables is in effect. The
-automatic command line option (See Chapter 11, "Compiler Options"), by default, causes the
automatic storage of variables.

e The order, number, type, and names of the dummy argument&MTaRY statement can be
different from the dummy arguments in FIBNCTION, SUBROUTINE, or otheENTRY

statements in the same subprogram. However, each reference to a function or subroutine must use an

actual argument list that agrees in order, number, and type with the dummy argument list in the
correspondingfUNCTION, SUBROUTINE, orENTRY statement.

Restrictions

« AnENTRY statement must not appear between a diecitatement and its correspondigD IF
statement or betweerD® statement and the terminal statement oLieloop.

Fortran 77 Language Reference Manual — Chapter 10, Statement Functions and Subprograms — 10

* Within a subprogram, an entry name may not also serve as a dummy arguntddNiGEHON,
SUBROUTINE, orENTRY statement or be in &XTERNAL statement.

« In a function subprogram, an entry name may also be a variable name provided the variable name is
not in any statement (except a type statement) precedil\NfiiRY statement of that name. After
theENTRY statement, the name can be used as a variable name.

< In a function subprogram, if an entry name is of type character, each entry name and the name of the
function subprogram must also be of type character and must have the same length declared. If any
are of length (*), theall must be of length (*).

* In a subprogram, a name that appears as a dummy argume®BNITRIY statement is subject to the
following restrictions:

— It must not appear in an executable statement precedingNA®RY statement unless it also
appears in @UNCTION, SUBROUTINE, orENTRY statement preceding the executable
statement.

— It must not appear in the expression of a statement function unless the name is also a dummy
argument of the statement function. It can appeaFdMCTION or SUBROUTINE
statement or in ABBNTRY statement preceding the statement function.

INCLUDE

TheINCLUDE statement incorporates the contents of a designated file into the Fortran compilation
directly following this statement.

Syntax
INCLUDE " filenamé

wherefilenameis a character string constant that specifies the file to be included.

Rules for Use
« AnINCLUDE statement can appear anywhere within a program unit.

« On encountering alNCLUDE statement, the compiler stops reading statements from the current file
and reads the statements in the included file. At the end of the included file, the compiler resumes
reading the current file with the statement followingI¥€LUDE statement.

Search Path

On encountering aNCLUDE statement, the compiler first searches for a file céiletame then for a
file named/usr/includefilename

Restrictions

« Anincluded file or module cannot begin with a continuation line. Each Fortran statement must be

Fortran 77 Language Reference Manual — Chapter 10, Statement Functions and Subprograms — 11

completely contained within a single file.

An INCLUDE statement cannon contain continuation lines. The first non comment line following
theINCLUDE statement cannot be a continuation line.

AnINCLUDE statement cannot be labeled. It must not have a statement number in the statement

number field.

Chapter 11

Compiler Options
This chapter contains the following subsections:

* "OPTIONS Statement”

* "In-Line Options"

¢ "$INCLUDE Statement"

This chapter describes options that affect source programs both during compilation and at run time.
Execute these options using

* OPTIONS statemerii specified in the source code as the first statement of a program unit

* In-line options individual statements embedded in the source code

+ S$INCLUDE statementi includes Fortran source statements from an external library into a program
This chapter discusses these options according to the mechanisms used to specify them. The command

line options, which are parameters specified as part d7 #tmommand when the compiler is invoked,
are explained in thEortran 77 Programmer’s Guide

OPTIONS Statement

The OPTIONS statement has the following syntax:
OPTIONS optiorf option..]

whereoptioncan be any of the following:

/14 INO4 [F77 [INOF77 |/ CHECK=BOUNDS / CHECK=NOBOUNDS
/ EXTEND_SOURCE / NOCEXTEND_SOURCE

These options perform the same function as the like—named command line options. See Chapter 1 of the
Fortran 77 Programmer’s Guid®r a description of these options. Specifyapdgionoverrides a
command line option when they are the samptionmust always be preceded by a slash (/).

Use the following rules when specifying @PTIONS statement:

e The statement must be the first statement in a program unit and must pre¢ROGRAM,
SUBROUTINE, FUNCTION, andBLOCKDATA statements.

e optionremains in effect only for the duration of the program unit in which it is defined.

In—Line Options

The syntax for in—line compiler options consists of a dollar sign ($) in column 1 of a source record,
followed by the name of the compiler option in either uppercase or lowercase, with no intervening blanks
or other separators.

Fortran 77 Language Reference Manual — Chapter 11, Compiler Options — 1

When an in—line compiler option is encountered in a source file, that option is put into effect beginning
with the source statement following the in—line compiler option. The sections that follow describe the
in—line compiler options supported by the compiler.

The compiler does not support the following options, but, for compatibility with other compilers, it does
recognize them:

ARGCHECK NOTBINARY
BINARY SEGMENT
CHAREQU SYSTEM
NOARGCHECK XREF

When it encounters one of these options, the compiler issues a warning message and treats it as a
comment line.

$COL72 Option

The$COL72 option instructs the compiler to process all subsequent Fortran source statements according
to the fixed—format 72—column mode described Buleice Program Lines in Chapter 1. The compiler
command line optioncol72has an identical effect on a global basis.

$COL120 Option

The$COL120o0option instructs the compiler to process all subsequent Fortran source statements according
to the fixed—format 120—column mode. The compiler command line eptti?Ohas an identical effect
on a global basis.

$F66DO Option

The$F66DO option instructs the compiler to process all subsedd®@ribops according to the rules of
Fortran 66. This principally means that&D loop bodies will be performed at least once regardless of
the loop index parameters. The compiler command line optinatrip has the identical effect on a
global basis.

$INT2 Option

The$INT2 option instructs the compiler to mak¢éTEGER*2 the default integer type and

LOGICAL*1 the default logical type. This convention stays in effect for the remainder of the program
and involves any symbolic names that are assigned a data type either by implicit typing rules or by using
INTEGER orLOGICAL declaration statements without a type length being specified. This option is
similar to the-i2 command line option except for the effect on the default logical type.

$LOG2 Option

The$LOG2 option instructs the compiler to mak®GICAL*2 instead oLOGICAL*4 the default

type forLOGICAL . This convention stays in effect for the remainder of the program and involves any
symbolic names that are assigned a data type either by implicit typing rules or by usiG GAL
declaration statement without a type length being specified.

Fortran 77 Language Reference Manual — Chapter 11, Compiler Options — 2

$INCLUDE Statement

The$INCLUDE statement includes source lines from secondary files in the current primary source
program. This feature is especially useful when two or more separately compiled source programs require
an identical sequence of source statements (for example, data declaration statements).

The form of thef)INCLUDE statement is
$INCLUDE filename

wherefilenamds either an absolute or relative UNIX file name. If the filename is relative and no file
exists by that name relative to the current working directory, an error is given and no attempt is made to
search an alternative path. The material introduced into the source progran$iyGhE/IDE statement

will follow the $INCLUDE statement, beginning on the next line. NestinglINCLUDE statements is
permitted within the constraints of the operating system.

Appendix A
Intrinsic Functions

This appendix contains the following subsections:
e "Generic and Specific Names"
e "Operational Conventions and Restrictions"

» "List of Functions"

This appendix describes the intrinsic functions provided with Fortran. Fortran intrinsic functions are
identified by two categories of names: specific and generi¢dtM®LICIT statement does not change the
data type of an intrinsic function.

Generic and Specific Names

A generic namés the name given to a class of objects. Intrinsic functions that perform the same
mathematical function, such as square root, are given a single name. For example, the generic name of the
square root function ISQRT; this function has four specific names for different data typORT,

DSQRT, CSQRT, andZSRT (see Table A}1However, you can use the generic n&QRT regardless

of the data type of the arguments.

An intrinsic function preceded by the lett&B is equivalent to the generic function with the same base
name, except that the arguments must be of PEBLE COMPLEX .

Intrinsic functions starting witH are equivalent to generic functions with the same base name, except
that the arguments must of tyheTEGER*2 . Similarly, arguments to intrinsic functions starting with
must be typdNTEGER*4 : for example|/IAND , HQINT , IIQNNT , JIQINT , JIQNNT.

When a generic name is referenced, the processor substitutes a function call for a specific name,
depending on the data type of the arguments. In this way, the same name can be used for different types of
arguments.

When an intrinsic function is to be used as the actual argument to another function, you must always use
the specific name, never the generic name.

If a generic name is referenced, the type of the result is the same as the type of the argument, except for
functions performing type conversion, nearest integer, and absolute value with a complex argument.
Some intrinsic functions allow more than one argument, in which case all the arguments must be of the
same type so that the function can decide which specific name function it should use.

If the specific name or generic name appears as the dummy argument of a function or subroutine, that
symbolic name cannot identify an intrinsic function in that program unit.

A name in aiNTRINSIC statement must be the specific name or generic name of an intrinsic function,
as given in Table A+-1

Referencing an Intrinsic Function

Fortran 77 Language Reference Manual — Appendix A, Intrinsic Functions — 1

Reference an intrinsic function in the form

fun(a[, al...)

where

fun is the generic or specific name of the intrinsic function.
a is an actual argument.

The actual arguments)(constitute the argument list and must agree in order, number, and type with the
specification described in this appendix and with each other. Each argument can be any expression. The
expression cannot contain an concatenation in which one or more of the operand lengths are specified
with an asterisk.

A function reference can be used as a primary in an expression. The following example involves
referencing an intrinsic function:

X = SQRT(B**2-4*A*C)

The result of a function becomes undefined when its arguments are not mathematically defined or exceed
the numeric range of the processor.

Operational Conventions and Restrictions

For most intrinsic functions, the data type of the result of the intrinsic function is the same as the
arguments. If two or more arguments are required or permitted, then all arguments must be of the same
type. AnIMPLICIT statement does not change the data type of a specific or generic name of an intrinsic
function.

If an intrinsic function name is used as an actual argument in an external procedure reference, the name
must be one of the specific names and must appealMI&INSIC statement. However, names of

intrinsic functions for type conversion, for lexical relationship, and for choosing the smallest or largest
value cannot be used as actual arguments.

List of Functions

Table A-1ists the available intrinsic functions. Operational conventions and restrictions (other than those
already given) are listed at the end of the table.

Note: REAL*16 intrinsic functions are not supported. The compiler issues a warning message when the
name of &REAL*16 intrinsic function is encountered; the equivalent double preciRBAI(*8)
function is used instead.

Table A-1 Intrinsic Functions

Function Number of Generic Specific Type of Argument Type of Result
Arguments Name Name

Conversion to 1 INT? INTEGER*1 INTEGER*2

INTEGER INTEGER*1 INTEGER*4

INTEGER*1 INTEGER*8

INTEGER*2 INTEGER*4

Fortran 77 Language Reference Manual — Appendix A, Intrinsic Functions — 2

SHORT
LONG
1 IFIX
IDINT
Truncation AINT
Conversion to 1 REAL
REAL
1 FLOAT
1 SNGL

IINT
JINT
KINT
IIDINT
JIDINT
KIDINT

IIFIX
JIFIX
KIFIX

IIDINT
JIDINT
KIDINT

AINT
DINT

FLOATI
FLOATJ
FLOATK

SNGL

FLOATI
FLOATJ
FLOATK

FLOATI

INTEGER*2
INTEGER*4
INTEGER*4
INTEGER*8
REAL*4
REAL*4
REAL*4
REAL*8
REAL*8
REAL*8
COMPLEX*8
COMPLEX*8
COMPLEX*8
COMPLEX*16
COMPLEX*16
COMPLEX*16

INTEGER*1
INTEGER*2
INTEGER*4
REAL*4
REAL*8
COMPLEX*8
COMPLEX*16

INTEGER*1
INTEGER*2
INTEGER*4
REAL*4
REAL*8
COMPLEX*8
COMPLEX*16

REAL*4
REAL*4
REAL*4

REAL*8
REAL*8
REAL*8

REAL*4
REAL*8

INTEGER*1
INTEGER*2
INTEGER*4
INTEGER*8
REAL*4
REAL*8
COMPLEX*8
COMPLEX*16

INTEGER*1
INTEGER*2
INTEGER*4
INTEGER*8

INTEGER*1
INTEGER*2

Fortran 77 Language Reference Manual — Appendix A, Intrinsic Functions — 3

INTEGER*8
INTEGER*4
INTEGER*8
INTEGER*8
INTEGER*2
INTEGER*4
INTEGER*8
INTEGER*2
INTEGER*4
INTEGER*8
INTEGER*2
INTEGER*4
INTEGER*8
INTEGER*2
INTEGER*4
INTEGER*8

INTEGER*2
INTEGER*2
INTEGER*2
INTEGER*2
INTEGER*2
INTEGER*2
INTEGER*2

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

INTEGER*2
INTEGER*4
INTEGER*8

INTEGER*2
INTEGER*4
INTEGER*8

REAL*4
REAL*8

REAL*4
REAL*4
REAL*4
REAL*4
REAL*4
REAL*4
REAL*4
REAL*4

REAL*4
REAL*4
REAL*4
REAL*4

REAL*4
REAL*4

Conversion to
DOUBLE
PRECISION

Conversion to
COMPLEX

Complex
Conjugate

Conversion to
DOUBLE
COMPLEX

Conversion to
character

Maximum value

1,2
1,2
1,2
1,2
1,2
1,2

1,2
1,2
1,2
1,2
1,2
1,2

2 or more

DBLE

DFLOAT

CMPLX

CONJG

DCMPLX

MAX

MAXO0

MAX1

FLOATJ
FLOATK
REAL

DBLE

DFLOTI
DFLOTJ
DFLOTK
DFLOATK

CONJG
DCONJG

CHAR

IMAXO

JMAXO0
KMAXO0
AMAX1
DMAX1

IMAXO0
JMAXO0
KMAXO0

IMAX1
JMAX1

INTEGER*4
INTEGER*8
REAL*4
REAL*8

INTEGER*1
INTEGER*2
INTEGER*4
INTEGER*8
REAL*4
REAL*8
COMPLEX*8
COMPLEX*16

INTEGER*1
INTEGER*2
INTEGER*4
INTEGER*8
INTEGER*8

INTEGER*1
INTEGER*2
INTEGER*4
INTEGER*8
REAL*4
REAL*8
COMPLEX*8
COMPLEX*16

COMPLEX*8
COMPLEX*8

INTEGER*1
INTEGER*2
INTEGER*4
INTEGER*8
REAL*4
REAL*8
COMPLEX*8
COMPLEX*16

LOGICAL*1
INTEGER*1
INTEGER*2
INTEGER*4
INTEGER*8

INTEGER*1
INTEGER*2
INTEGER*4
INTEGER*8
REAL*4
REAL*8

INTEGER*1
INTEGER*2
INTEGER*4
INTEGER*8

REAL*4
REAL*4

Fortran 77 Language Reference Manual — Appendix A, Intrinsic Functions - 4

REAL*4
REAL*4
REAL*4
REAL*4

REAL*8
REAL*8
REAL*8
REAL*8
REAL*8
REAL*8
REAL*8
REAK*8

REAL*8
REAL*8
REAL*8
REAL*8
REAL*8

COMPLEX*8
COMPLEX*8
COMPLEX*8
COMPLEX*8
COMPLEX*8
COMPLEX*8
COMPLEX*8
COMPLEX*8

COMPLEX*8
COMPLEX*16

COMPLEX*16
COMPLEX*16
COMPLEX*16
COMPLEX*16
COMPLEX*16
COMPLEX*16
COMPLEX*16
COMPLEX*16

CHARACTER
CHARACTER
CHARACTER
CHARACTER
CHARACTER

INTEGER*1
INTEGER*2
INTEGER*4
INTEGER*8
REAL*4
REAL*8

INTEGER*1
INTEGER*2
INTEGER*4
INTEGER*8

INTEGER*2
INTEGER*4

AMAXO0

Minimum value 2 or more MIN

MINO

MIN1

AMINO

Nearest integer 1 NINT

ANINT

IDNINT

Zero—Extend 1 ZEXT
functions

KMAX1

AIMAXO0
AIJMAXO
AKMAXO0

IMINO

JMINO
KMINO
AMIN1
DMIN1

IMINO
JMINO
KMINO

IMIN1
JMIN1
KMIN1

AIMINO
AJMINO
AKMINO

ININT
JNINT
KNINT
IIDNNT
JIDNNT
KIDNNT

ANINT
DNINT

IIDNNT
JIDNNT
KIDNNT

IZEXT

JZEXT

KZEXT

REAL*4

INTEGER*1
INTEGER*2
INTEGER*4
INTEGER*8

INTEGER*1
INTEGER*2
INTEGER*4
INTEGER*8
REAL*4
REAL*8

INTEGER*1
INTEGER*2
INTEGER*4
INTEGER*8

REAL*4
REAL*4
REAL*4

INTEGER*1
INTEGER*2
INTEGER*4
INTEGER*8

REAL*4
REAL*4
REAL*4
REAL*8
REAL*8
REAL*8

REAL*4
REAL*8

REAL*8
REAL*8
REAL*8

LOGICAL*1
LOGICAL*2
INTEGER*1
INTEGER*2
LOGICAL*1
LOGICAL*2
LOGICAL*4
INTEGER*1
INTEGER*2
INTEGER*4
LOGICAL*1
LOGICAL*2
LOGICAL*4
LOGICAL*8
INTEGER*1
INTEGER*2
INTEGER*4
INTEGER*8

Fortran 77 Language Reference Manual — Appendix A, Intrinsic Functions — 5

INTEGER*8

REAL*4
REAL*4
REAL*4
REAL*4

INTEGER*1
INTEGER*2
INTEGER*4
INTEGER*8
REAL*4
REAL*8

INTEGER*1
INTEGER*2
INTEGER*4
INTEGER*8

INTEGER*2
INTEGER*4
INTEGER*8

REAL*4
REAL*4
REAL*4
REAL*4

INTEGER*2
INTEGER*4
INTEGER*8
INTEGER*2
INTEGER*4
INTEGER*8

REAL*4
REAL*8

INTEGER*2
INTEGER*4
INTEGER*8

INTEGER*2
INTEGER*2
INTEGER*2
INTEGER*2
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*8
INTEGER*8
INTEGER*8
INTEGER*8
INTEGER*8
INTEGER*8
INTEGER*8
INTEGER*8

Absolute value 1 ABS

IABS®
Remaindering 2 mob
Transfer of sign 2 SIGN
ISIGN®
Positive 2 DIM
difference
IDIM
DOUBLE 2
PRECISION
product of REALSs
Length of 1
character entry
Index of a 2
substring

Character (ASCII 1
value of 1-byte
character
argument)

Logically greater 2
than or equal

IIABS
JIABS
KIABS
ABS
DABS
CABS
CDABS
ZABS

IIABS
JIABS
KIABS

IMOD

JMOD
KMOD
AMOD
DMOD

IISIGN
JISIGN
KISIGN
SIGN
DSIGN

IISIGN
JISIGN
KISIGN

IIDIM
JIDIM
KIDIM
DIM
DDIM

IIDIM
JIDIM
KIDIM

DPROD

LEN
INDEX

ICHAR

LGE

INTEGER*1
INTEGER*2
INTEGER*4
INTEGER*8
REAL*4
REAL*8
COMPLEX*8
COMPLEX*16
COMPLEX*16

INTEGER*1
INTEGER*2
INTEGER*4
INTEGER*8

INTEGER*1
INTEGER*2
INTEGER*4
INTEGER*8
REAL*4
REAL*8

INTEGER*1
INTEGER*2
INTEGER*4
INTEGER*8
REAL*4
REAL*8

INTEGER*1
INTEGER*2
INTEGER*4
INTEGER*8

INTEGER*1
INTEGER*2
INTEGER*4
INTEGER*8
REAL*4
REAL*8

INTEGER*1
INTEGER*2
INTEGER*4
INTEGER*8

REAL*4

CHARACTER

CHARACTER

CHARACTER
CHARACTER
CHARACTER

CHARACTER

Fortran 77 Language Reference Manual — Appendix A, Intrinsic Functions — 6

INTEGER*1
INTEGER*2
INTEGER*4
INTEGER*8
REAL*4
REAL*8
COMPLEX*8
COMPLEX*16
COMPLEX*16

INTEGER*1
INTEGER*2
INTEGER*4
INTEGER*8

INTEGER*1
INTEGER*2
INTEGER*4
INTEGER*8
REAL*4
REAL*8

INTEGER*1
INTEGER*2
INTEGER*4
INTEGER*8
REAL*4
REAL*8

INTEGER*1
INTEGER*2
INTEGER*4
INTEGER*8

INTEGER*1
INTEGER*2
INTEGER*4
INTEGER*8
REAL*4
REAL*8

INTEGER*1
INTEGER*2
INTEGER*4
INTEGER*8

REAL*4

INTEGER*4

INTEGER*4

INTEGER*2
INTEGER*4
INTEGER*8

LOGICAL*4

Logically greater 2

than

Logically less 2

than or equal

Logically less 2

than

Imaginary part of 1 IMAG
complex number

Real part of 1

complex number

Square root 1 SQRT
Exponential 1 EXP
Natural logarithm 1 LOG
Common 1 LOG10
logarithm

Sine 1 SIN
Sine (degree) 1 SIND
Cosine 1 COos
Cosine (degree) 1 COSD
Tangent 1 TAN
Tangent (degree) 1 TAND
Arcsine 1 ASIN m
Arcsine (degree) 1 ASIND

LGT
LLE
LLTY

AIMAG
DIMAG

REAL
DREAL

SQRT
DSQRT
CSQRT
CDSQRT
ZSQRT

EXP
DEXP
CEXP
CDEXP
ZEXP

ALOG
DLOG
CLOG
CDLOG
ZLOG

ALOG10
DLOG10

SIN
DSIN
CSIN
CDSIN
ZSIN

SIND
DSIND

COos
DCOS
CCOs
CDCOS
ZCOS

COSD
DCOSD

TAN
DTAN

TAND
DTAND

ASIN
DASIN

ASIND
DASIND

CHARACTER

CHARACTER

CHARACTER

COMPLEX*8
COMPLEX*16

COMPLEX*8
COMPLEX*16

REAL*4
REAL*8
COMPLEX*8
COMPLEX*16
COMPLEX*16

REAL*4
REAL*8
COMPLEX*8
COMPLEX*16
COMPLEX*16

REAL*4
REAL*8
COMPLEX*8
COMPLEX*16
COMPLEX*16

REAL*4
REAL*8

REAL*4
REAL*8
COMPLEX*8
COMPLEX*16
COMPLEX*16

REAL*4
REAL*8

REAL*4
REAL*8
COMPLEX*8
COMPLEX*16
COMPLEX*16

REAL*4
REAL*8
REAL*4
REAL*8
REAL*4
REAL*8
REAL*4
REAL*8

REAL*4
REAL*8

Fortran 77 Language Reference Manual — Appendix A, Intrinsic Functions — 7

LOGICAL*4

LOGICAL*4

LOGICAL*4

REAL*4
REAL*8

REAL*4
REAL*8

REAL*4
REAL*8
COMPLEX*8
COMPLEX*16
COMPLEX*16

REAL*4
REAL*8
COMPLEX*8
COMPLEX*16
COMPLEX*16

REAL*4
REAL*8
COMPLEX*8
COMPLEX*16
COMPLEX*16

REAL*4
REAL*8

REAL*4
REAL*8
COMPLEX*8
COMPLEX*16
COMPLEX*16

REAL*4
REAL*8

REAL*4
REAL*8
COMPLEX*8
COMPLEX*16
COMPLEX*16

REAL*4
REAL*8
REAL*4
REAL*8
REAL*4
REAL*8
REAL*4
REAL*8

REAL*4
REAL*8

Arccosine 1

Arccsine (degree) 1

Arctangent 1
Arctangent 1
(degree)

Arctangent 2
Arctangent 2
(degree)

Hyperbolic 1
sine

Hyperbolic 1
cosine

Hyperbolic 1
tangent

Bitwise AND 2

Bitwise inclusive 2
OR

Bitwise 1
complement

Bitwise exclusive 2
OR

Bitwise logical 2
shift

Bitwise circular 2

shift
Bit extraction 3
Bit set 2

ACOS
ACOSD

ATAN
ATANDP

ATANE/
ATAN2D
SINH
COSH
TANH

IANDL

IORL

NOTL

IEORL

ISHFT

ISHFTC

IBITS

IBITSET

ACOS
DACOS

ACOSD
DACOSD

ATAN
DATAN

ATAND
DATAND

ATAN2
DATAN2

ATAN2D
DATAN2D

SINH
DSINH

COSH
DCOSH

TANH
DTANH

IIAND
JIAND
KIAND

IIOR
JIOR
KIOR

INOT
JNOT
KNOT

IIEOR
JIEOR
KIEOR

IISHFT
JISHFT
KISHFT

IISHFTC
JISHFTC
KISHFTC

IIBITS
JIBITS
KIBITS

IIBSET
JIBSET
KIBSET

REAL*4
REAL*8

REAL*4
REAL*8

REAL*4
REAL*8

REAL*4
REAL*8

REAL*4
REAL*8

REAL*4
REAL*8

REAL*4
REAL*8

REAL*4
REAL*8

REAL*4
REAL*8

INTEGER*1
INTEGER*2
INTEGER*4
INTEGER*8

INTEGER*1
INTEGER*2
INTEGER*4
INTEGER*8

INTEGER*1
INTEGER*2
INTEGER*4
INTEGER*8

INTEGER*1
INTEGER*2
INTEGER*4
INTEGER*8

INTEGER*1
INTEGER*2
INTEGER*4
INTEGER*8

INTEGER*1
INTEGER*2
INTEGER*4
INTEGER*8

INTEGER*1
INTEGER*2
INTEGER*4
INTEGER*8

INTEGER*1
INTEGER*2
INTEGER*4
INTEGER*8

Fortran 77 Language Reference Manual — Appendix A, Intrinsic Functions — 8

REAL*4
REAL*8

REAL*4
REAL*8

REAL*4
REAL*8

REAL*4
REAL*8

REAL*4
REAL*8

REAL*4
REAL*8

REAL*4
REAL*8

REAL*4
REAL*8

REAL*4
REAL*8

INTEGER*1
INTEGER*2
INTEGER*4
INTEGER*8

INTEGER*1
INTEGER*2
INTEGER*4
INTEGER*8

INTEGER*1
INTEGER*2
INTEGER*4
INTEGER*8

INTEGER*1
INTEGER*2
INTEGER*4
INTEGER*8

INTEGER*1
INTEGER*2
INTEGER*4
INTEGER*8

INTEGER*1
INTEGER*2
INTEGER*4
INTEGER*8

INTEGER*1
INTEGER*2
INTEGER*4
INTEGER*8

INTEGER*1
INTEGER*2
INTEGER*4
INTEGER*8

Bit test 2 BTEST INTEGER*1 LOGICAL*4

BITEST INTEGER*2 LOGICAL*2
BJTEST INTEGER*4 LOGICAL*4
BKTEST INTEGER*8 LOGICAL*8
Bit clear 2 IBCLR INTEGER*1 INTEGER*1
IIBCLR INTEGER*2 INTEGER*2
JIBCLR INTEGER*4 INTEGER*4
KIBCLR INTEGER*8 INTEGER*8

8INT and IFIX return type INTEGER*2 if thé2compile option is in effect; otherwise, the
result type is
INTEGER*4.

b\When NINT or IDNINT is specified as argumentn a subroutine call or function reference,
the compiler supplies either an INTEGER*2 or an INTEGER*4 function depending @ the —
command line option

(see Chapter 1of theortran 77 Programmer’s Guide

®The IABS, ISIGN, IDIM, and integer MOD intrinsics accept either INTEGER*2 arguments or
INTEGER*4 arguments, and the result is the same type.

dThe result for MOD, AMOD, and DMOD is undefined when the value of the second argument
is zero.

€1f the value of the first argument of ISIGN, SIGN, or DSIGN is zero, the result is zero.

fThe result of INDEX is an integer value indicating the position in the first argument of the first
substring which is identical to the second argument. The result of INDEX('ABCDEF’, 'CD’),

for example, would be 3. If no substring of the first argument matches the second argument, the
result is zero. INDEX and ICHAR return the result type INTEGER*2 if theempile option

is in effect; otherwise, the result type is

INTEGER*4.

9The character relational intrinsics (LLT, LGT, LEE, and LGE) return result type LOGICAL*2
if the $log2(see Chapter 11) compile option is in effect; otherwise, the result type is
LOGICAL*4.

N The value of the argument of SQRT and DSQRT must be greater than or equal to zero. The
result of CSQRT is the principal value with the real part greater than or equal to zero. When the
real part is zero, the

imaginary part is greater than or equal to zero.

' The argument of ALOG and DLOG must be greater than zero. The argument of CLOG must
not be (0.,0.). The range of the imaginary part of the result of CLOG is: —p <imaginary part <p.

IThe argument for SIND, COSD, or TAND must be in degrees and is treated as modulo 360.

KThe absolute value of the arguments of ASIN, DASIN, ASIND, DASIND, ACOS, DACOS,
ACOSD, and DACSOD must be less than or equal to 1.

'The range of the result for ASIN and DASIN 182—<result 9v2; the range of the result for
DASIN is 0 <result 9t and the range of the result of ACOS and DACOS is less than or equal
to one.

MThe result of ASIN, DASIN, ACOS, and DACOS is in radians.

Fortran 77 Language Reference Manual — Appendix A, Intrinsic Functions — 9

"The result of ASIND, DASIND, ACOS, DACOSD is in degrees.
°The result of ATAN, DATAN, ATAN2, and DTAN2 is in radians.
PThe result of ATAND, DATAND, ATAN2D, and DATAN2D is in degrees.

491f the value of the first argument of ATAN2 or DATAN2 is positive, the result is positive.

When the value of the first argument is zero, the result is zero if the second argumemt is positive
and P if the second

argument is negative. If the value of the first argument is negative, the result is negative. If the
value of the second argument is zero, the aboslute value of the result is P/2. Both arguments
must not have the value zero.

"Note 3 on this page also applies to ATAN2 and DTAN2D, except for the range of the result,
which is:
—-180 degrees << result << 180 degrees.

Fortran 77 Language Reference Manual — Appendix A, Intrinsic Functions — 10

