
Lecture 13: The Knapsack Problem

Outline of this Lecture

� Introduction of the 0-1 Knapsack Problem.

� A dynamic programming solution to this problem.
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0-1 Knapsack Problem

Informal Description: We have computed � data files
that we want to store, and we have available

�
bytes

of storage.
File � has size ��� bytes and takes ��� minutes to re-
compute.
We want to avoid as much recomputing as possible,
so we want to find a subset of files to store such that� The files have combined size at most

�
.� The total computing time of the stored files is as

large as possible.
We can not store parts of files, it is the whole file or
nothing.

How should we select the files?
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0-1 Knapsack Problem

Formal description: Given two � -tuples of positive
numbers

	 ��
��������������������� and
	 � 
���� � ���������������

and
� � �

, we wish to determine the subset�  !#" �%$&�������'�(�*) (of files to store) that

maximizes �,+�- ���.�

subject to �,+- � �0/ � �

Remark: This is an optimization problem.

Brute force: Try all $ � possible subsets
�

.

Question: Any solution better than the brute-force?
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Recall of the Divide-and-Conquer

1. Partition the problem into subproblems.

2. Solve the subproblems.

3. Combine the solutions to solve the original one.

Remark: If the subproblems are not independent, i.e.
subproblems share subsubproblems, then a divide-
and-conquer algorithm repeatedly solves the common
subsubproblems.
Thus, it does more work than necessary!

Question: Any better solution?
Yes–Dynamic programming (DP)!
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The Idea of Dynamic Programming

Dynamic programming is a method for solving
optimization problems.

The idea: Compute the solutions to the subsub-problems
once and store the solutions in a table, so that they
can be reused (repeatedly) later.

Remark: We trade space for time.
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The Idea of Developing a DP Algorithm

Step1: Structure: Characterize the structure of an
optimal solution.

– Decompose the problem into smaller problems,
and find a relation between the structure of the
optimal solution of the original problem and the
solutions of the smaller problems.

Step2: Principle of Optimality: Recursively define the
value of an optimal solution.

– Express the solution of the original problem in
terms of optimal solutions for smaller problems.
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The Idea of Developing a DP Algorithm

Step 3: Bottom-up computation: Compute the value
of an optimal solution in a bottom-up fashion by
using a table structure.

Step 4: Construction of optimal solution: Construct
an optimal solution from computed information.

Steps 3 and 4 may often be combined.
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Remarks on the Dynamic Programming Approach

� Steps 1-3 form the basis of a dynamic-programming
solution to a problem.

� Step 4 can be omitted if only the value of an opti-
mal solution is required.
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Developing a DP Algorithm for Knapsack

Step 1: Decompose the problem into smaller
problems.

We construct an array 1 2 � �3�4�5� � �3� � 6
.

For
" / � / � , and

� / � / �
, the entry

1 27�8�(� 6
will store the maximum (combined)

computing time of any subset of files
!#" �%$&���������(�9)

of (combined) size at most � .

If we can compute all the entries of this array, then
the array entry 1 27�5� � 6

will contain the maximum
computing time of files that can fit into the
storage, that is, the solution to our problem.
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Developing a DP Algorithm for Knapsack

Step 2: Recursively define the value of an optimal
solution in terms of solutions to smaller problems.

Initial Settings: Set

1 2 � �:� 60; �
for

� / � / �
, no item

1 2<�8��� 65; = >
for � ? �

, illegal

Recursive Step: Use

1 27�8�(� 65; @ ACBED 1 27� = " ��� 6 �(� �(F 1 27� = " �(� = � � 6.G
for

" / � / � ,
� / � / �

.
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Correctness of the Method for Computing 1 27�8�(� 6

Lemma: For
" / � / � ,

� / � / �
,

1 27�8�(� 6H; @ ACBED 1 27� = " �:� 6 � � � F 1 27� = " ��� = � � 6 G �

Proof: To compute 1 2<�8��� 6
we note that we have only

two choices for file � :

Leave file � : The best we can do with files!#" �%$&���������(� = " ) and storage limit � is 1 27� = " �8� 6
.

Take file � (only possible if �I� / � ): Then we gain
� � of computing time, but have spent � � bytes of
our storage. The best we can do with remaining
files

!J" �%$K����������� = " ) and storage
D � = � � G is

1 27� = " ��� = ��� 6 .
Totally, we get �L� F 1 27� = " �:� = ��� 6 .

Note that if ��� � � , then ��� F 1 27� = " �8� = ��� 60; = >
so the lemma is correct in any case.
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Developing a DP Algorithm for Knapsack

Step 3: Bottom-up computing 1 27�8��� 6
(using iteration,

not recursion).

Bottom: 1 2 � ��� 6H; �
for all

� / � / �
.

Bottom-up computation: Computing the table using

1 2<�8��� 6H; @ AMBED 1 2<� = " ��� 6 �:� �NF 1 2<� = " ��� = � � 6.G
row by row.

1

n

2

0 0 0 0 0... ...

...

bottom

up

i= 0

V[i,w] w=0 1 2 3 ... ... W
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Example of the Bottom-up computation

Let
� ; " �

and

� 1 2 3 4
��� 10 40 30 50
��� 5 4 6 3

O P �,QSRUT V 1 2 3 4 5 6 7 8 9 10�XW V 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 10 10 10 10 10 10
2 0 0 0 0 40 40 40 40 40 50 50
3 0 0 0 0 40 40 40 40 40 50 70
4 0 0 0 50 50 50 50 90 90 90 90

Remarks:

Y The final output is
O P[Z Q\
�V]TXW ^_V .

Y The method described does not tell which subset gives the
optimal solution. (It is ` �CQ Zba in this example).
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The Dynamic Programming Algorithm

KnapSack( c QSRdQ � Qfe )g
for ( R W V to e )

O P VCQhRiT�W V ;
for ( ��W 
 to � )

for ( R W V to e )
if ( R P �3T�j R )O P �,QkRUT�W l mon ` O P �Mp 
qQhRUTrQ c P �3Tts O P �Mp 
qQhR p R P �3T3T a ;
elseO P �,QkRUT�W OIP �Mp 
qQhRUT ;

return
O P � Que T ;v

Time complexity: Clearly, w D � � G
.
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Constructing the Optimal Solution

� The algorithm for computing 1 27�8��� 6
described in

the previous slide does not keep record of which
subset of items gives the optimal solution.

� To compute the actual subset, we can add an
auxiliary boolean array x#y]y(z*27�8�{� 6

which is 1 if we
decide to take the � -th file in 1 2<�8��� 6

and 0 other-
wise.

Question: How do we use all the values x#y]y(z*2<�8��� 6
to

determine the subset
�

of files having the maximum
computing time?
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Constructing the Optimal Solution

Question: How do we use the values x#yqy(z|27�8�%� 6
to

determine the subset
�

of items having the maximum
computing time?

If keep[ �5� � ] is 1, then � } �
. We can now repeat

this argument for keep[ � = " � � = � � ].
If keep[ �H� � ] is 0, the � ~} �

and we repeat the argu-
ment for keep[ � = " � � ].

Therefore, the following partial program will output the
elements of

�
:

� ; �
;

for ( � ; � downto 1)
if (keep 2<�8� � 60; ; "

)�
output i;� ; � = � 27� 6 ;�
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The Complete Algorithm for the Knapsack Problem

KnapSack( c QSRdQ � Qfe )g
for ( R W V to e )

O P VMQhRUT�W V ;
for ( ��W 
 to � )

for ( R W V to e )
if (( R P �3TXj R ) and ( c P �3Tts O P �Cp 
qQhR p R P �3T3T�� O P �Mp 
qQhRUT ))g OIP �,QhRUT�W c P �3Tts O P �Cp 
qQhR p R P �3T3T ;

keep
P �,Q�RUT�W 
 ;v

elseg OIP �,QhRUT�W O P �Mp 
qQhRUT ;
keep

P �,Q�RUT�W V ;v� W e ;
for ( ��W � downto 1)

if (keep
P �,Q � TJW W 
 )g

output i;� W � p R P �3T ;v
return

O P � Q�e T ;v
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