
Windows Installer
Technology
for System Administrators

Darwin Sanoy and
Jeremy Moskowitz 

The Definitive Guide TotmThe Definitive Guide Totm



Introduction 

 
i

Introduction to Realtimepublishers 
by Sean Daily, Series Editor 
 
The book you are about to enjoy represents an entirely new modality of publishing and a major 
first in the industry. The founding concept behind Realtimepublishers.com is the idea of 
providing readers with high-quality books about today’s most critical technology topics—at no 
cost to the reader. Although this feat may sound difficult to achieve, it is made possible through 
the vision and generosity of a corporate sponsor who agrees to bear the book’s production 
expenses and host the book on its Web site for the benefit of its Web site visitors. 

It should be pointed out that the free nature of these publications does not in any way diminish 
their quality. Without reservation, I can tell you that the book that you’re now reading is the 
equivalent of any similar printed book you might find at your local bookstore—with the notable 
exception that it won’t cost you $30 to $80. The Realtimepublishers publishing model also 
provides other significant benefits. For example, the electronic nature of this book makes 
activities such as chapter updates and additions or the release of a new edition possible in a far 
shorter timeframe than is the case with conventional printed books. Because we publish our titles 
in “real-time”—that is, as chapters are written or revised by the author—you benefit from 
receiving the information immediately rather than having to wait months or years to receive a 
complete product. 

Finally, I’d like to note that our books are by no means paid advertisements for the sponsor. 
Realtimepublishers is an independent publishing company and maintains, by written agreement 
with the sponsor, 100 percent editorial control over the content of our titles. It is my opinion that 
this system of content delivery not only is of immeasurable value to readers but also will hold a 
significant place in the future of publishing. 

As the founder of Realtimepublishers, my raison d’être is to create “dream team” projects—that 
is, to locate and work only with the industry’s leading authors and sponsors, and publish books 
that help readers do their everyday jobs. To that end, I encourage and welcome your feedback on 
this or any other book in the Realtimepublishers.com series. If you would like to submit a 
comment, question, or suggestion, please send an email to feedback@realtimepublishers.com, 
leave feedback on our Web site at http://www.realtimepublishers.com, or call us at 800-509-
0532 ext. 110. 

Thanks for reading, and enjoy! 
 
Sean Daily 
Founder & Series Editor 
Realtimepublishers.com, Inc.

http://www.realtimepublishers.com/
http://www.realtimepublishers.com/


Table of Contents 

 
ii

 
Introduction to Realtimepublishers.................................................................................................. i  
Chapter 1: Meet Windows Installer: Introduction, Features, and Benefits......................................1 

Defining the Need for Windows Installer........................................................................................1 

Saved Time and Effort Through Automated Installs...........................................................1 

Application and Operating System Stability........................................................................2 

The Benefits of Windows Installer and MSI .......................................................................4 

Your First Windows Installer Encounter .............................................................................6 

Windows Installer Version Numbers...............................................................................................9 

What Is Your Windows Installer Version Number?............................................................9 

The Internals of Version Numbers.....................................................................................10 

Windows Installer Version 2.0 ..........................................................................................10 

Windows’ Relationship to Windows Installer ...............................................................................12 

Windows Installer on Downlevel Clients ..........................................................................13 

MSI File Foundations ....................................................................................................................13 

Setup or MSI? ....................................................................................................................13 

Base Installations, Transforms, and Patches..................................................................................14 

Base Installations ...............................................................................................................14 

Transforms .........................................................................................................................15 

Vendor-Supplied Transform-Generation Tools.....................................................16 

Third-Party Transform-Generation Tools..............................................................17 

Executing MSIs with Transforms ..........................................................................19 

Patches ...............................................................................................................................19 

Roadmap for the Rest of the Text ..................................................................................................20 

 
Chapter 2: MSI Tools Roundup.....................................................................................................21 

Basics of the Repackaging Approach ............................................................................................22 

Microsoft’s Offerings.....................................................................................................................22 

WinInstall LE.....................................................................................................................23 

WinInstall LE Operation........................................................................................23 

SMS Installer .....................................................................................................................25 

The SMS Installer Repackage Installation Wizard Tool .......................................26 

The SMS Installer Watch Tool ..............................................................................27 



Table of Contents 

 
iii

The SMS Installer Script Editor.............................................................................28 

Creating MSI Files with the SMS Installer............................................................30 

Commercial Third-Party MSI Tools..............................................................................................33 

Commercial Third-Party Tools at a Glance .......................................................................33 

Wise Package Studio..........................................................................................................34 

AdminStudio 3.5 ................................................................................................................38 

Prism Pack .........................................................................................................................40 

Added Functionality...........................................................................................................42 

Wise Package Studio 4.0 Repackaging Innovations..............................................42 

AdminStudio 3.5 Repackaging Innovations ..........................................................43 

Shareware and Freeware Third-Party Tools ..................................................................................43 

Summary ........................................................................................................................................44 

Chapter 3: Windows Installer Internals .........................................................................................45 

Application Management Meta Data .............................................................................................45 

MSI File Format.............................................................................................................................46 

Three Streams ....................................................................................................................46 

The Database......................................................................................................................46 

“Open” File Format............................................................................................................48 

How Packages Describe Software Applications and Installation Procedures ...............................48 

Software Application Information .....................................................................................49 

Identification in Windows Installer .......................................................................49 

Component Structure and Attributes .................................................................................50 

Component Name ..................................................................................................51 

Component Codes..................................................................................................52 

Keypaths ................................................................................................................52 

Entry Points and Advertisements...........................................................................53 

Typical Components ..............................................................................................55 

Features ..............................................................................................................................56 

Package Execution Information.........................................................................................57 

Standard Actions....................................................................................................57 

Custom Actions......................................................................................................58 

Sequences...............................................................................................................58 

Properties ...............................................................................................................59 



Table of Contents 

 
iv

Notable Properties..................................................................................................61 

Self-Healing Overview ......................................................................................................62 

Summary of Package Structure Concepts..........................................................................63 

Customizing Packages .......................................................................................................64 

Managed Application Settings...............................................................................66 

Creating Transforms for Application Settings.......................................................68 

Using Transforms...................................................................................................69 

Administrative Installs ...........................................................................................69 

Building and Using Administrative Installs...........................................................71 

Installing from an Administrative Share................................................................72 

Serving Applications..............................................................................................72 

Security and Policies......................................................................................................................73 

Windows Installer Policies ................................................................................................74 

Elevated Privileges Implementation ......................................................................74 

Managed Applications ...........................................................................................75 

Always Install with Elevated Privileges (AlwaysInstallElevated) Policy .............76 

AlwaysInstallElevated Hacking.............................................................................76 

Disable Windows Installer (DisableMSI) Policy...................................................76 

Cache Transforms in Secure Location on Workstation (TransformsSecure) ........77 

Other Security-Oriented Policies .......................................................................................77 

Non-Security Policies ........................................................................................................77 

Excess Recovery Options ......................................................................................77 

Logging Policy.......................................................................................................78 

Software Restriction Policies.............................................................................................79 

Certificate Rules.....................................................................................................79 

Hash Rules .............................................................................................................79 

Path Rules ..............................................................................................................80 

Zone Rules .............................................................................................................80 

Combining Rules ...................................................................................................80 

Summary ........................................................................................................................................80 

Chapter 4: Best Practices for Building Packages...........................................................................81 

Best Practices Formulation ............................................................................................................81 

Best Practice Is Not Optional.............................................................................................83 



Table of Contents 

 
v

Darwin’s Law of Technology Sophistication ....................................................................83 

Repackaging Best Practice Recommendations..............................................................................84 

Do Not Repackage All Types of Setup Programs .............................................................85 

Have a Documented Desktop Reference Configuration....................................................86 

Use Clean System Reloads for Testing and Packaging .....................................................86 

Why Clean Machines? ...........................................................................................87 

Additional Management Data for Packaging.....................................................................88 

Windows Installer Best Practices...................................................................................................89 

Invest in Training...............................................................................................................90 

Invest in Good Tools..........................................................................................................90 

Basic Packaging Functionality...............................................................................91 

Advanced Functionality .........................................................................................91 

Peripheral Features.................................................................................................92 

Administrator vs. Developer Tools........................................................................93 

Manage Your Windows Installer Engine Version .............................................................93 

Know How Windows Installer Interacts with Other Technologies ...................................93 

Configure Policies and Security.........................................................................................94 

Ensure Source List Management .......................................................................................94 

Repackage Existing Packages Rather than Convert Them................................................95 

Use VBScript for Custom Actions and Other MSI Scripting............................................95 

Run Package Validation.....................................................................................................97 

Perform a Dry Run with Verbose Logging........................................................................97 

Utilize Windows Installer’s Logging Capabilities.............................................................98 

Formulating Your Own Processes .................................................................................................98 

Windows Installer SDK Assumptions ...............................................................................98 

Package Classifications....................................................................................................101 

Package Structure Rules for Administrators....................................................................103 

Component Rules—The Protocols for Sharing ...................................................103 

Scope of Distribution .......................................................................................................104 

Code Management Components ......................................................................................105 

Duplicate Component Definitions .......................................................................107 

Conflicting Component Definitions.....................................................................108 

Compounded Problems........................................................................................110 



Table of Contents 

 
vi

Upgrade Packages........................................................................................................................110 

Upgrade Processes ...........................................................................................................110 

Package Attributes ...........................................................................................................111 

Update Types ...................................................................................................................112 

Minor Upgrade.................................................................................................................112 

Small Update (Admins Need Not Apply)........................................................................112 

Major Upgrade .................................................................................................................113 

Simplifying Upgrades ......................................................................................................113 

Patch Packages.............................................................................................................................114 

Generating Patches...........................................................................................................114 

Patching Reality Checks ..................................................................................................115 

Conflict Management for Package Structure...............................................................................116 

A Word About Merge Modules .......................................................................................116 

Merge Modules in the Administrator’s World.....................................................117 

Merge Modules as a Poor Man’s Conflict Management Tool.............................117 

Replacing Repackaged Files with Merge Modules .............................................118 

Administrator and In-House Developer Generated Merge Modules...................118 

Summary ......................................................................................................................................119 

Chapter 5: Windows Installer with or without Active Directory.................................................120 

Beware the Tide of Windows Installer ........................................................................................120 

Services Provided by Win2K Technologies ................................................................................121 

IntelliMirror Repository Technologies Overview ...........................................................122 

IntelliMirror Deployment Technologies Overview .........................................................123 

Source Lists—the Good and the Bad...........................................................................................124 

Trickle Services, CD-ROM Distribution, and Source Lists ............................................126 

Fixing Existing Unmanaged Sources...............................................................................126 

Designing the Package Distribution Repository..........................................................................127 

When to Choose Something Other than DFS ..................................................................128 

DFS Functionality Alternatives .......................................................................................129 

Managed Drive Letters and Managed Environment Variables............................130 

Package Source List Management .......................................................................135 

When to Choose Something Other than FRS ..................................................................136 

FRS Alternatives..............................................................................................................136 



Table of Contents 

 
vii

Directory Structure Issues................................................................................................137 

Directory Structure Considerations..................................................................................138 

Administrative Installs .....................................................................................................139 

Repository Availability Service Level Agreement ..........................................................141 

Package Deployment Technology Planning ................................................................................141 

IntelliMirror Fine Print ....................................................................................................142 

When to Consider Alternatives to IntelliMirror Deployment..........................................143 

Summary ......................................................................................................................................144 

 
Chapter 6: MSI Deployment Roundup ........................................................................................145 

MSI Deployment for Free............................................................................................................145 

Sneakernet........................................................................................................................146 

Batch File Installation ......................................................................................................148 

Microsoft MSI Deployment with Group Policy ..........................................................................151 

MSI Deployment with Third-Party Tools....................................................................................154 

Deploying with the Assistance of Third-Party Repackaging Tools.................................154 

Third-Party Distribution Methods....................................................................................156 

Microsoft SMS and MSI Deployment .................................................................157 

MSI Deployment and Management with Altiris Client Management Suite....................160 

MSI Deployment and Management with ON Technology’s ON Command CCM.........162 

MSI Deployment with ONDemand Software’s WinINSTALL ......................................165 

MSI Deployment with Mobile Automation 2000............................................................169 

Summary ......................................................................................................................................172 

Content Central ............................................................................................................................173 

Download Additional eBooks! ....................................................................................................173 



Copyright Statement 

 
viii

Copyright Statement 
© 2005 Realtimepublishers.com, Inc. All rights reserved. This site contains materials that 
have been created, developed, or commissioned by, and published with the permission 
of, Realtimepublishers.com, Inc. (the “Materials”) and this site and any such Materials are 
protected by international copyright and trademark laws. 

THE MATERIALS ARE PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, 
EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED 
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, 
TITLE AND NON-INFRINGEMENT. The Materials are subject to change without notice 
and do not represent a commitment on the part of Realtimepublishers.com, Inc or its web 
site sponsors.  In no event shall Realtimepublishers.com, Inc. or its web site sponsors be 
held liable for technical or editorial errors or omissions contained in the Materials, 
including without limitation, for any direct, indirect, incidental, special, exemplary or 
consequential damages whatsoever resulting from the use of any information contained 
in the Materials.  

The Materials (including but not limited to the text, images, audio, and/or video) may not 
be copied, reproduced, republished, uploaded, posted, transmitted, or distributed in any 
way, in whole or in part, except that one copy may be downloaded for your personal, non-
commercial use on a single computer. In connection with such use, you may not modify 
or obscure any copyright or other proprietary notice.  

The Materials may contain trademarks, services marks and logos that are the property of 
third parties.  You are not permitted to use these trademarks, services marks or logos 
without prior written consent of such third parties. 

Realtimepublishers.com and the Realtimepublishers logo are registered in the US Patent 
& Trademark Office. All other product or service names are the property of their 
respective owners. 

If you have any questions about these terms, or if you would like information about 
licensing materials from Realtimepublishers.com, please contact us via e-mail at 
info@realtimepublishers.com. 

 

mailto:info@realtimepublishers.com


Chapter 1 

 
1

[Editor’s Note: This eBook was downloaded from Content Central. To download other eBooks 
on this topic, please visit http://www.realtimepublishers.com/contentcentral/.] 
 
Chapter 1: Meet Windows Installer: Introduction, Features, 
and Benefits 
by Jeremy Moskowitz 
You’re an administrator. You’re the person who comes in early to reboot the servers on Sunday. 
You’re the person who stays late to ensure that the backup job has really kicked off successfully. 
You’re setting up servers and hauling around the occasional desktop, and you’re the lucky one 
who all-too-frequently has the honor of losing weekends due to a poorly planned “move, add, 
change.” We created this book for you. 

If you’re familiar with the technology and history behind Windows Installer, you know that 
historically, discussions about this technology have had a bit of a developer slant. However, 
there is another side to these discussions, and the administrator’s side to the Windows Installer 
story is an exciting one that might get you a weekend or two back. 

We’re going to try hard in this book to show you why Windows Installer is useful for you—the 
administrator. Throughout the book, we will be getting into some of the meaty internals of 
Windows Installer. If you have a little bit of a developer background, that’s great; but those who 
do not will be just as comfortable and find much useful information. With that in mind, let’s start 
our journey. 

Defining the Need for Windows Installer 
Before we dive into an introduction to Windows Installer and an exploration of how it works, 
let’s define the need for this technology. Why was it developed and what does it offer that will 
benefit you? 

Saved Time and Effort Through Automated Installs 
How are you installing your software today? If you’re like many administrators, you’re still 
tracking down the installation CD-ROM media (or you’ve made the installation available on a 
network source), running from machine to machine, and shooing the user aside for 30 to 60 
minutes to install and test the application. This method works just fine for about 10 machines but 
quickly falls apart once the number of users and applications starts to increase. In the past, 
additional manpower has been brought in to shoulder the load—more people are hired to slog 
from computer to computer and load applications. Although hiring more people can ease the 
load, you and the other administrators must still answer, for each installation, the same 10 
questions—such as the location of the program files, the default location of the data files, and 
which portions of the application should be loaded.  

In addition to being a “poor administrative experience,” this tack is expensive. Imagine the figure 
you would come up with if you had to calculate all the time that you and your staff spent 
ensuring that each desktop had exactly the same hand-crafted software installation settings. 
Think of all the other stuff you could be doing if you and your team weren’t trotting to each 
desktop. 

http://www.realtimepublishers.com/contentcentral/


Chapter 1 

Enter Windows Installer technology. After we’ve covered all the pieces of this technology—
from the Windows Installer basics to the MSI repackaging process to the actual deployment—
you’ll have gained the knowledge, skills, and tools necessary to save yourself and your staff tons 
of time that can then be devoted to more productive endeavors. 

� Many IT departments try some form of automated software distribution. Oftentimes, the software 
distribution job is seen as “secondary work” and isn’t given a dedicated person. When the new 
implementation starts destabilizing as a result of a lack of dedicated personnel, IT managers become 
frustrated and determine that it’s best to just throw in the towel rather than continue throwing money 
at a new project that already appears doomed. The result is that the project is completely scrapped 
and bad feelings are felt toward those who wanted to give it a shot in the first place. We’ll be talking 
about how to prevent this chain of events through an exploration of distribution methods and helpful 
tips in Chapter 6. 

Application and Operating System Stability 
How often have you loaded a desktop or server system, then returned months later to load yet 
another application only to discover the bitter taste of application incompatibility? As Figure 1.1 
shows, applications can be destabilized by other applications that load on top of required 
components. 

 

Figure 1.1: Evidence of application incompatibility. 

This incompatibility can occur because the technology used to package (or re-package) the 
application or manipulate its components for installation was simply not aware of other 
components already loaded on the system. Likewise, the operating system (OS) components can 
find themselves in harm’s way. 

 
2



Chapter 1 

 
3

� Figures 1.1 appears here with permission from David Joffe and his Microsoft Crash Gallery Web site 
at http://www.scorpioncity.com/mscrash.shtml. 

In Windows ME, Windows 2000 (Win2K), and Windows XP and later, new strides have been 
taken to ensure that, at least, the OS has an increased layer of protection. Read about it in the 
following sidebar “Windows File Protection.” 

Windows File Protection 

The Windows OS has had a reputation for crashing, but a new feature in Windows 98, Win2K, and 
Windows XP tries to put an end to this problem. The new feature is called Windows File Protection 
(WFP.) The goal of WFP is to ensure that if a critical system file, such as a .DLL or .EXE, is 
compromised, a secret copy can be brought back from a hidden “cache” on the disk. This copy ensures 
that misbehaving applications cannot take over the OS. Take a look into Windows’ secret directory called 
dllcache under the %systemroot%\system32 directory, usually C:\windows or C:\winnt (see Figure 1.2). 

 
Figure 1.2: A list of some of the files in dllcache. 

With WFP, no applications (except hotfixes or service packs) can overwrite these files—either here or in 
the files’ actual locations (normally Windows or system32). Go ahead and try to delete a file listed in 
dllcache, such as calc.exe, from its actual location. It will come right back from the cache! 

Figure 1.3 shows a famous picture taken at London Heathrow Airport by Alan Cox. As this 
picture shows, application incompatibilities can lead to an unstable system with disastrous 
results. Although this picture illustrates a humorous example of the result of an application 
incompatibility, your goal should be to provide as stable of a system as possible. 



Chapter 1 

 
4

� The picture in Figure 1.3 was reproduced with permission, courtesy of Alan Cox. 

 

Figure 1.3: London Heathrow Airport’s system has a problem. 

But how does Windows Installer relate to system stability? Before Windows Installer, packaged 
applications haven’t had the ability to sense what was going on around them, which resulted in 
application and OS stability problems when a new application was installed on the system. Thus, 
Microsoft needed to step in and release a technology that was vendor-neutral and helped increase 
OS and application stability. That technology is called Windows Installer. In the following 
sections, we’ll explore how Windows Installer improves stability as well as other benefits this 
technology provides. 

The Benefits of Windows Installer and MSI 
Windows Installer works as a result of the marriage between Windows Installer and a new 
package type called the Microsoft Installer (MSI) file type, which I’ll discuss later in this 
chapter, and because of the behind-the-scenes action that takes place when Windows Installer 
encounters the new package type. Before we get too far along and talk about the technology 
behind Windows Installer and MSI and the stuff you can do with that technology, let me 
introduce its basic benefits. Table 1.1 provides just a few of the myriad benefits that Windows 
Installer and the corresponding MSI technology bring to the table. 



Chapter 1 

 
5

� Some documentation refers to MSI packages as Medium Scale Integration files rather than Microsoft 
Installer files. 

Windows Installer and MSI Benefit Description 

Application is installed via OS service On Win2K and Windows XP and later, the 
application is installed in an administrative context. 
I’ll explore this technology later in this chapter.  

MSI provides a standard package format A new format, the MSI package and its .MSI 
extension, is the new standard to interface with the 
Windows Installer technology. 

Transactional install and rollback Windows Installer packages can be made to either 
fully install the way the author intended, or if there 
is a failure during the install (for example, because 
you run out of disk space part-way through), the 
failed install can simply undo all the changes it has 
made up to that point in the installation to bring the 
system back to its previous state. 

Self-healing (or self-repair) of corrupt or deleted 
critical files 

As we’ll explore in detail later, certain files can be 
keyed for detection of failure. If a critical file (a .DLL 
or .EXE file, for example) that is part of the 
distribution is corrupt or is deleted, the user can be 
prompted to repair the installation by presenting the 
original .MSI distribution. Additionally, if the 
installation media is available (for example, on a 
network share), the repair simply happens 
automatically. 

Served installs Because MSI files can be housed in a share point 
and delivered via a server, you can keep your 
installation files all in one place or move them 
around—closer to your users if necessary. 

Install on demand  Windows Installer–deployed applications can be 
offered to clients at any time. Once offered, their 
installation can be triggered when a user clicks a 
corresponding registered extension. For instance, 
clicking a .DOC file prompts the installation of Word 
for Windows. Once chosen, the application is 
downloaded in a Just in Time (JIT—see the 
following entry) fashion. 

JIT installation After an application is offered to a user, it isn’t 
actually installed. Instead, the application’s icon 
appear, and when the user decides to run the 
application, it is installed from the media (or 
downloaded from the server) in a JIT fashion, and 
presents itself as ready to the user in a matter of 
moments. 

Packages can utilize transform files An application’s package can be developed such 
that a base or administrative install is prepared for 
general distribution. A transform file can overlay the 
base, letting you customize specific installations. I’ll 
discuss this benefit later in this chapter. 
 
 



Chapter 1 

 
6

Windows Installer and MSI Benefit Description 

Packages can utilize patch files After a package is on the machine, you might need 
to fix the source files if a bug is found or an update 
is needed. Windows Installer defines a clear path to 
rectify these problems. I’ll discuss this benefit later 
in this chapter. 

State management In the past, it’s been difficult to know whether an 
application is installed on a machine. You would 
have to query for a .DLL with a specific version 
number or determine whether an .EXE file with a 
specific name was present. Windows Installer 
provides an application programming interface 
(API) that lets programmers and administrators see 
whether a specific application is installed on a 
machine. 

Administrative privileges are not required for 
installations 

Previously, you might have found that applications 
needed to be loaded through the local administrator 
account. Windows Installer eliminates this 
requirement. 

Scriptable API With a little elbow grease, you could whip together 
a VBScript to help you with your MSI file 
manipulations. The API to manipulate MSI files is 
so powerful that it can create packages, validate 
packages, update packages, trigger installs and 
uninstalls, examine the MSI repository data on 
computers, and perform some custom actions. If 
you have to repeat the same function, scripting is 
the way to go. 

Packages can be managed using the MSIEXEC 
command-line tool 

The command-line tool MSIEXEC is a very 
powerful tool that lets you manage your MSI 
applications. We’ll be exploring some features of 
the MSIEXEC command-line tool a bit later in this 
chapter. 

Table 1.1: Benefits of Windows Installer and MSI technology. 

� In the rest of the chapter and in the upcoming chapters, we’ll explore these benefits in detail. A 
roadmap of the remaining chapters can be found at the end of this chapter. 

Your First Windows Installer Encounter 
The Windows Installer technology has been around for a while, so it’s likely that you’ve already 
had some experience with the technology, perhaps without even being aware of it. For instance, 
you might have casually encountered it when installing the first Windows Installer–ready 
application, Office 2000, as Figure 1.4 shows. 



Chapter 1 

 

Figure 1.4: Office 2000 was the first application to ship as a Windows Installer–ready application. 

Take a close look at the icons within the graphic. First, you’ll notice that a product’s installation 
is viewed in a hierarchical fashion. At the top of the hierarchy, we can see Windows Installer 
telling us which product we are installing. In this case, the product is Microsoft Office. Below 
the product, is a subset called features, as Figure 1.5 details. 

 

Figure 1.5: Highlighting a product’s features. 

 
7



Chapter 1 

The features make up the product, and there can be one or more features per product. Each 
feature in the hierarchy can have sub-features, as Figure 1.6 shows. In Office 2000, most of the 
components are located in the sub-features. 

 

Figure 1.6: Features can have sub-features. 

0 Occasionally sub-features are also called features, so these terms can be misleading. Common use 
defines features as the first level below product, and sub-features as the second level below product 
(as well as all additional levels below the feature level). 

As you can see in the previous graphics, four possible installation states exist for any specific 
subsection of Office 2000: 

• Solid gray means that the feature or sub-feature will be installed and available for use as 
soon as the install is complete. 

• White with a yellow “1” icon means that the feature or sub-feature will be installed at 
first use. When the feature is installed, this sub-feature isn’t really installed. When the 
user tries to use this sub-feature for the first time, it is pulled from the installation media 
and installed in a JIT fashion. A benefit of this installation state is that it saves space—
this feature will only be installed (and consume disk space) if users are going to use it. 

• The CD-ROM icon means that the feature or sub-feature will not be installed directly on 
the hard drive. The feature or sub-feature will be accessible and able to run when the 
source CD-ROM is present in the drive or through the network if a network connection is 
available. This installation state is handy, for example, for features that consume a lot of 
space, such as multimedia files and reference files, that will be used occasionally, if ever. 
In the previous figures, for example, Microsoft Access has been set to run solely from the 
installation media—either a CD-ROM drive, network share, or other source. 

 
8



Chapter 1 

• The red X icon means that the feature or sub-feature will not be installed and won’t be 
accessible during normal use of the product. If this feature is desired, the installation 
setup program needs to be re-run and this feature’s state needs to be changed to one of 
the other three states.  

Windows Installer Version Numbers 
Like most software products, Windows Installer has versions associated with it. There are major 
revisions (such as 1.0) and minor revisions (such as 1.1). Windows Installer is unique in that it is 
versioned for each platform. That is, Windows NT, Windows 9x, and so on each has its own 
Windows Installer version number. However, automatic updates can occur without a user’s 
knowledge, so users in your environment could possibly have different Windows Installer 
versions. 

What Is Your Windows Installer Version Number? 
To find out which version of Windows Installer is on your machine, you can simply use 
Windows Explorer to navigate to the %systemroot% directory (usually \Windows or \Winnt), 
enter the system32 directory, right-click MSI.DLL, and select Properties. Doing so reveals the 
window that Figure 1.7 shows. 

) You can also run the command-line tool MSIEXEC from the Start menu Run text box to discover the 
version number. 

 

Figure 1.7: Inspecting your Windows Installer version number. 

 
9



Chapter 1 

 
10

The file version provided on the Version tab of the properties window should match the product 
version (in Figure 1.7, they both have a value of 1.11.2405.0). The 2405.0 entry is simply the 
specific build number. The Windows Installer filer version is 1.11. So why would your machine 
have a different file version? 

The Internals of Version Numbers 
As one might expect, Windows Installer started with version 1.0. As I previously mentioned, 
Office 2000 was the first Windows Installer–ready application. Being the first presented a 
problem: How would the system perform the Office 2000 installation if Windows didn’t yet have 
the Windows Installer bits (the executables necessary for Windows Installer to install the 
program)? 

The Office 2000 development team came up with a brilliant little plan: Before actually loading 
Office, load a little piece of code that loads the bits required to perform a Windows Installer–
type install, then perform the rest of the Office 2000 install as a Windows Installer install. 
(Current applications will attempt to install the latest version of the Windows Installer using a 
similar method.) So, the bits for Windows Installer 1.0 are included on the Office 2000 CD-
ROM and are automatically installed when the setup routine is run. 

Let’s take a look at the Windows Installer versions from then until now: 

• Version 1.10 was the first version included in Win2K directly (build 1.10.1029.0). For 
other platforms, there was a version made available for download from the Microsoft 
Web site (build 1.10.1029.1). 

• Version 1.11 appeared in Service Pack 1 (SP1) for Win2K (build 1.11.1314.0). Another, 
later build of Version 1.11 appeared in SP2 (build 1.11.2405.0). 

• Version 1.20 appeared in Windows ME (build 1.20.1410.0) and was available for 
download from the Microsoft Web site (build 1.20.1827.1). 

• Version 2.0 and later will be discussed in the next section. 

� Note the pattern of version numbers. Specifically, versions that end in .0 ship with and are built into 
the OS. Those that end in .1 are downloads. 

Windows Installer Version 2.0 
Windows Installer 2.0 is the latest major release for Windows Installer. You might casually 
encounter the upgrade in a manner similar to the original Office 2000 installation. That is, you 
might simply double-click to install your latest application acquisition, and you’ll be presented 
with the pronouncement that Figure 1.8 shows. 



Chapter 1 

 

Figure 1.8: The installation of Windows Installer 2.0. 

� You must have Windows NT SP6 installed before you are able to install Windows Installer 2.0. 

Windows Installer 2.0 provides some new features, which the following list describes. These 
features make Windows Installer a much more efficient engine. 

• Hash-based calculations—Windows Installer 2.0 is a lot smarter than previous versions 
about recognizing when files need to be replaced—for either a repair, patch, or upgrade 
to an existing package. Should an application need a repair, upgrade, or patch, Windows 
Installer 2.0 performs a much faster hash-based calculation (rather than comparing each 
installed file to the original source installation, which is a really slow process) to 
determine whether a file needs to be replaced. The added bonus is that you might not 
need the original source media available unless there is a problem with a file that 
specifically needs to be replaced. Thus, you can more quickly perform a repair, patch, or 
an upgrade. 

• Delayed reboot—When a new version of the Windows Installer bits becomes available, 
you’re prompted to install the new version (as Figure 1.8 shows). Previous versions of 
Windows Installer required that you install the new bits and reboot the system before you 
could progress with the installation of your application. Windows Installer 2.0 lets you 
delay the reboot (which completes the Windows Installer upgrade) until all your MSI 
packages are fully installed. 

� An upgrade from Windows Installer 1.x to 2.0 requires a reboot, but you can delay the reboot until 
you’re ready. In addition, you must be logged on as a local Administrator to perform the upgrade. 

• Improved logging—Windows Installer 2.0 provides better logging in the event log and 
when files are installed. Each error receives an ID (the error codes for previous versions 
of Windows Installer all fell within two or three non-unique event IDs), which greatly 
improves how you can search for and filter Windows Installer events. 

• Increased security and multiple user isolation—Previously, an MSI application was 
installed for one user; however, another user might be able to use that application. 
Windows Installer 2.0 makes a great effort to ensure that each install is a personal and 
customized experience so that when Joe sits at Sally’s machine, Joe cannot run an 
application that Sally installed just for Sally. 

• Digital signature support—Files can now be digitally signed within an MSI file (as well 
as .MSP and .MST files) to ensure that the file came from a trusted source. 

 
11



Chapter 1 

• 64-bit service with 64-bit Windows—Windows .NET server and Windows XP will each 
have 64-bit versions that will run on the Itanium II processor. These OSs will be able to 
take advantage of the new 64-bit Windows Installer services. 

) To download Windows Installer 2.0, go to 
www.microsoft.com/msdownload/platformsdk/sdkupdate/psdkredist.htm. 

Windows’ Relationship to Windows Installer 
Let’s take a closer look at how Windows Installer and Windows are related. Recall that the 
Windows Installer bits are built into Win2K and Windows XP; moreover, they run as a service. 
To see the service, simply right-click My Computer, select Manage, and click the Services entry 
under Services and Applications. The Windows Installer service is highlighted in Figure 1.9. 

 

Figure 1.9: Locating the Windows Installer service. 

Windows Installer is installed as a service, so it’s capable of intercepting shortcuts and file 
extensions that link to applications and prompt their install from the source media. For instance, 
you might have Office 2000 loaded, but set to load PowerPoint upon first use (that’s the icon 
with the little ‘1’ we saw in Figure 1.4). 

The version that runs on Win2K and Windows XP and later is also capable of receiving and 
executing instructions when running in an Active Directory (AD) environment. Specifically, 
Win2K and Windows XP and later can take instructions to load MSI applications via Group 
Policy. This functionality allows for applications deployed via AD to run in an administrative 
context—allowing applications to be loaded when administrators want systems protected, and 
preventing regular users from installing applications they shouldn’t. We’ll be discussing this 
method of installation in Chapter 6. 

 
12



Chapter 1 

 
13

Windows Installer on Downlevel Clients 
Services are incapable of running on Windows 9x machines, so you won’t be able to perform the 
aforementioned procedure. You could see the Windows Installer service on NT clients; however, 
downlevel clients can’t receive Group Policy, so they are incapable of receiving instructions 
from AD telling them to install or upgrade an MSI file. 

Although downlevel clients can’t receive Group Policy, and hence, are incapable of receiving 
MSI installation instructions, the clients are still capable of using nearly all the remaining 
Windows Installer features. For example, recall that files can be keyed for proper operation, and 
if a required file should get damaged, the application can simply prompt for the original 
installation source. This capability is present with downlevel clients and is a major win for 
system stability on older clients. 

) Microsoft has recently provided a very good FAQ about Windows Installer at 
http://www.microsoft.com/windows2000/community/centers/management/msi_faq.asp. 

MSI File Foundations 
In this section, we’ll explore how an administrator might typically encounter MSI files. Not 
every MSI application will be interfaced in the same way, but this section will provide you with 
general exposure to the process. 

Setup or MSI? 
As we’ve discussed, you might already be familiar with MSI files because a vendor has delivered 
some of your applications in the MSI format. Interestingly, though, some vendors, including 
Microsoft, still include a legacy setup.exe program. This setup.exe program is often simply 
checking the system for the presence of MSI bits, then calling the corresponding .MSI file to 
launch. Oftentimes setup.exe is provided as a backward-compatibility measure; that is, those 
who don’t know to click the .MSI file will simply use the setup.exe program, which then calls 
the .MSI file. 

For example, as Figure 1.10 illustrates, the Win2K Support Tools installation comes with both a 
setup.exe program and a file named 2000RKST.MSI. Clicking either SETUP or 2000RKST will 
ultimately launch the MSI file, and start the installation. 



Chapter 1 

 

Figure 1.10: The Win2K Support Tools can be launched in either fashion. 

Base Installations, Transforms, and Patches 
We can build on this foundation of knowledge about MSI and Windows Installer so that you 
understand how to manage applications using all the new MSI functions. When you receive an 
application package from a vendor, what is the actual process you’re supposed to follow—after 
you get the software, what do you do? 

Base Installations 
First, you’ll need to understand that the application will come from a vendor and ship as a set of 
base installs. The base installs are the bits that are downloaded from the Web or the bits on the 
CD-ROM that constitute the original distribution of the software. (In just a moment we’ll 
compare base installations to transforms and patches.) 

To make use of the base installation, you might need to prepare the installation, creating an 
administrative installation. In an administrative installation, the base installation’s files are 
basically yanked from the packed source (in this case, the MSI file) and placed in the format that 
the application needs in another, alternative directory structure that is suitable for file sharing. 
(This technique is similar to the way that Windows 95 and Office 97 rollouts were prepared.) 
Not all .MSI packages must be prepared as an administrative installation; check your vendor’s 
documentation to be sure. 

 
14



Chapter 1 

When an administrative installation is required to manipulate a vendor-supplied package, you’ll 
usually use the built-in Win2K MSIEXEC command to create the administrative installation 
point. Oftentimes, an administrative installation is performed by running the MSIEXEC utility 
with the /a switch, as follows: 

msiexec /a {packagename}.MSI 

When you do, the familiar Windows Installer window will pop up, showing you that the 
command is working, as Figure 1.11 shows. 

 

Figure 1.11: Run MSIEXEC to prepare the installation. 

After this command has executed, you’ll typically get a wizard that asks where you want to place 
the administrative installation. Simply place the files into a shared folder, and you’re most of the 
way done. Your users could then connect to the administrative point by mapping a drive or via 
logon script or one of the many alternative methods, and run the installation. 

The problem with running the installation in this fashion is that it’s simply not customized or 
tailored for the many users who might want to install and use the software. Indeed, all users who 
connect back to either the base bits or the administrative installation are usually presented with 
the default settings as the MSI package is coded. If an end user isn’t savvy, he or she could be 
faced with many potential installation choices, as we saw in Figures 1.5, 1.6, and 1.7. That is 
where transforms come in. 

Transforms 
So, although both the base and administrative installations are useful, the installations that they 
create can simply be too broad. If a client were to double-click the setup’s .MSI in the base 
installation, the client would be prompted to install every default option described in the 
package, which might not be the ideal installation for the client. You might want to specify that 
certain users get some options in a package and ensure that others do not, as well as specify the 
default installation directory, the default Save as location, and so on. 

To do so, the MSI format allows you to create transforms. A transform filters and shapes what 
your MSI file will look like for a specific user base. A transform file has an .MST extension. 

 
15



Chapter 1 

Transforms can be handy in a variety of situations. For instance, you might choose to have a base 
MSI installation package that loads the DogFoodMaker 5.0 application. However, you might 
want a customized installation for the sales group that places the default installation point on the 
D drive, a customized installation for the marketing group that places the default installation 
point on the E drive, and a customized installation for the nurses that has only one feature. 

Vendor-Supplied Transform-Generation Tools 
Transforms can be created for a specific MSI file in multiple ways. One way is that a vendor 
supplies a standalone tool that examines their product’s setup .MSI file, allows for user input, 
then spits out a customized .MST file. Figure 1.12 shows an example of a custom–installation–
creation wizard. 

 

Figure 1.12: A vendor’s custom–installation–creation wizard for creating transforms. 

Such a tool uses the vendor’s MSI file as an initial starting point, then walks you through which 
settings you can change to customize an installation. After you’ve chosen your customizations, 
the tool spits out both an MST file and instructions for its use (as Figure 1.13 shows). 

 
16



Chapter 1 

 

Figure 1.13: The final window of a custom–installation–creation wizard. 

Don’t run the package just yet. In the following sections, I’ll explore third-party transform-
generation tools, then discuss what to do with the customized installation file. 

� Figure 1.13 shows output that uses a specific drive letter—the G drive. For you to use the command 
that Figure 1.13 shows, G would actually need to be mapped to the administrative installation. If you 
don’t want to worry about drive mappings, consider substituting using universal naming convention 
(UNC) pathnames. 

Third-Party Transform-Generation Tools 
Although many vendors are starting to produce their software as MSI files, a lot of them don’t 
yet offer a standalone tool to generate MST files. If you have applications that fall into this 
category, you’ll need to find a third-party tool that can crack open an existing MSI file and help 
you generate an associated MST file, such as the InstallTailor tool included in Wise Solutions’ 
Wise Package Studio. As Figure 1.14 shows, you simply point InstallTailor to an existing MSI 
file (either one that you create or a vendor-supplied MSI file). 

 
17



Chapter 1 

 

Figure 1.14: Opening an existing MSI file to create an MST file. 

You’ll then be asked to “simulate” the MSI file’s installation. Make your installation choices as 
if you were actually installing the MSI package. When you’re finished, the tool will create the 
MST file, as Figure 1.15 shows. 

 

 
18

Figure 1.15: Creating an  MST file for your applications. 



Chapter 1 

Executing MSIs with Transforms 
After you’ve created a transform by using either a vendor-supplied standalone application or 
third-party transform-generation source, you’re ready to run. If you want a client to get the MSI 
package with your MST customizations, simply execute MSIEXEC in the following fashion: 

msiexec /I {packagename}.MSI TRANSFORMS={transform.mst} 

This command line runs the MSI package and applies the changes that you included in the MST 
file. 

Patches 
Getting the base bits online via the administrative installation is important. It’s also important to 
make use of transform files, as they let you specify which bits that you want to make their way 
onto the client desktop. But what if the original bits need to be fixed in some way? That’s where 
the MSI file definition has room to be adjusted. 

If an update or a fix is available for a current MSI installation, you can patch the original 
installation with the latest bits to ensure that the most modern bits are being used. These files 
come in the form of .MSP files, signifying that they are patch files. 

After you download the MSP file, you’ll need to run the MSIEXEC command to update the MSI 
with the latest patch file. To do so, use the following command syntax, as Figure 1.16 shows: 

msiexec /a {packagename}.MSI /p {patchfile}.MSP 

 

Figure 1.16: Execute the patch against the MSI file. 

Depending on the application, you might be prompted for the path of the administrative 
installation. After the file installs, all users who run the MSI will have the latest updates. 

The good news about using MSP files for patching is that you’re actually modifying the source 
MSI file. Thus, all new installations that spring forth from this MSI will be up to date with the 
latest patches. The bad news about using MSP files for patching is that you’re stranding the 
installations that used the previous (un-patched) version of the MSI. If a client that used this un-
patched MSI has a problem and must pull down a file or two from the source, it won’t be able to 
because the MSI file is now different. 

Therefore, you have to instruct all systems that used the previous version of the MSI that a new 
MSI file is available and to reinstall from that source. A typical command line to do so might 
look like the following example: 

msiexec /fvomus package.msi REINSTALL=ALL 

This command instructs the application to perform a full reinstallation. After running this 
command, if a re-installation is required or even just one file is damaged, the target system 
matches the administrative installation. 

 
19



Chapter 1 

 
20

) The /f option in MSIEXEC simply specifies that you want to do a repair. The v, o, m, u, and s options 
essentially overwrite all previous files and registry entries if they are encountered. 

Roadmap for the Rest of the Text 
At this point, you should have a good handle on what the Windows Installer technology does and 
why the MSI file type is necessary. With this knowledge, we can start committing to the idea of 
consistently using the MSI file type so that every application we deploy is delivered as an MSI 
package. 

In future chapters, we’ll show you how to start creating your own packages and make use of all 
that the MSI technology has to offer. We’ll do so via both free and third-party tools that help in 
MSI file generation, as we’ll show you in Chapter 2. 

In this chapter, we touched on the relationship between Windows Installer and MSI files. But to 
really make the best use of the technology, we’ll need to dig deeper. In Chapter 3, we’ll tackle 
the package structure in greater detail, talk about how to further manipulate packages using 
transforms, and learn how to secure our packages. Then, we’ll move on in Chapter 4 to the secret 
world of the MSI software development kit (SDK). 

Many companies are moving toward Win2K and AD, but many are staying put with either 
Novell or NT for the foreseeable future. If you’re not planning on going to AD anytime soon or 
you simply don’t want to make use of the built-in Win2K software deployment features, Chapter 
5 will be a must-read for you. 

Finally, we’ll wrap things up in Chapter 6 by exploring various ways to distribute the packages 
you’ve learned to make while repackaging and authoring. Have a small user base? Have a giant 
user base? Have Win2K and AD? Chapter 6 will highlight various methods for you to get the 
right package to the right people.



Chapter 2 

 
21

Chapter 2: MSI Tools Roundup 

by Jeremy Moskowitz 
 

In the last chapter, you were introduced to the current crop of installation headaches and how the 
Windows Installer technology in conjunction with MSI files helps get you closer to the way you 
should be installing your software. Remember, Windows Installer allows you several tangible 
benefits that you can’t get via the widespread setup.exe methods. A quick review of the major 
highlights follows: 

• Transactional install and rollback—If the package fails to install midway, the package 
automatically removes itself as if the installation was never attempted. 

• Self-healing (or self-repair) of corrupt or deleted critical files—If the installation is 
damaged, a file (or many files) can be grabbed from the installation source to fix the 
application. 

• Just-in-time (JIT) installation—A package need not be fully installed right away. If a 
feature or component of the package is needed later, it can be grabbed from the source 
and loaded JIT—all while the application is already started. 

These benefits all sound terrific, and they are. But if your application isn’t packaged as an MSI 
file already, what are you going to do? Quite simply, you’ll need to get your applications to the 
MSI “promised land.” And you’ll do that with one or more of the myriad tools available. You’ll 
use these MSI creation tools to manage the applications you buy or develop in-house and 
repackage them into new MSI packages. This process is usually as simple as rounding up the 
existing setup.exe-type applications and repackaging them into the Windows Installer and MSI 
format.  

Some tools are free and some cost a bit, and they all have different angles and philosophies for 
repackaging. That’s what this chapter is about—to expose you to the different options you have 
for authoring or repackage your application. You’ll get glimpses into how to use each tool; 
however, this chapter isn’t meant to discuss every nook, cranny, and feature that any specific 
application provides. In addition, this chapter isn’t meant to guide you to a specific tool, and it 
doesn’t include specific recommendations for a tool that you should use. 

Each of these tools will lead you to the end goal, which is to repackage your application into the 
MSI format. Indeed, each tool will do the job. I will be minimizing the step-by-step instructions, 
and, instead, try to emphasize each application’s overall methodology differences. It is also my 
goal to briefly expose you to a little bit of each application’s interface so that you can be 
somewhat comfortable and familiar with each one should you encounter it on your own. By 
being exposed to many tools, you can make an informed purchasing decision as well as be a little 
more comfortable with using the tool upon first use. You will use this information about the tool 
or tools you choose in the next several chapters, especially Chapter 4 about the best practices for 
building packages. 



Chapter 2 

 
22

Basics of the Repackaging Approach 
Many of tools that we’ll discuss share a common approach. Specifically, these tools perform a 
snapshot; they take a before and after picture and generate a package based on the delta (the 
differences between the two pictures). Although these steps represent the basic approach of the 
majority of the packages we’ll discuss, each tool will bring something extra to the table, to 
enhance the experience. A snapshot occurs as follows: 

• Start the tool to perform the snapshot. 

• Have the tool examine the contents of the hard drive to see the current state. 

• Run the Setup.exe program for the application that you want to repackage. 

• Set the desired installation options. 

• Customize the installation as desired. 

• Have the tool re-examine the contents of the hard drive to see the changes to the original 
state. 

• The tool creates the repackaged application. 

Regardless of which tool you’re working with, you should keep one main principal in mind: 
ensure that the machine from which you’re creating the snapshot is as clean as possible. A clean 
machine is one with the OS installed and almost nothing else. That way, when the tool performs 
the snapshot, it has only the most minimal interference. Even seemingly innocuous applications, 
such as screensavers, could impact what is seen in the before and after scans of the hard drive.  

However, if you cannot use a totally clean machine (for instance, the application you want to 
repackage has dependencies on another preloaded application), you can use the following tips to 
improve your chances at a successful repackage: 

• Close all applications 

• Stop all unnecessary services 

• Clear out the Recycle Bin 

• Disable screensavers 

• Disable antivirus programs 

• Disable anything else that runs in the background 

Microsoft’s Offerings 
Because Microsoft is the biggest proponent of the Windows Installer technology, it would stand 
to reason that the company would have several tools to assist in MSI file creation. After all, MSI 
does stand for Microsoft Installer. With that in mind, we’re going to explore three tools that 
Microsoft provides for administrators to repackage an application into the MSI format. 



Chapter 2 

WinInstall LE 
WinInstall LE is a free tool provided by Microsoft to help with creating MSI files. WinInstall LE 
wasn’t designed by Microsoft, rather, it has a long and strange history. WinInstall LE was 
developed by OnDemand Software. Seagate bought WinInstall LE, then Veritas bought Seagate. 
WinInstall LE didn’t get much attention from Veritas, as the company’s focus is mainly backup 
software. OnDemand Software reformed and took the product back into development. 

� It’s easy to get confused by the naming convention that OnDemand Software has chosen. WinInstall 
LE is the tool we’re discussing that you can use to repackage setup.exe programs into MSI files. The 
primary job of WinInstall (without the LE) is to deploy and install applications throughout your 
environment. However, the full package of WinInstall does contain a standalone repackaging 
application that is basically a revised cousin of WinInstall LE. 

WinInstall LE Operation 
To get started on your WinInstall LE journey, you’ll need to grab hold of either a Win2K 
Professional or Win2K Server (or Advanced Server) CD-ROM. Once you have it, locate 
SWIADMLE.MSI, which can be found in the 
{cdrom}:\VALUEADD\3RDPARTY\MGMT\WINSTLE directory, as Figure 2.1 shows. 

 

Figure 2.1: Traverse to the appropriate directory to reach the SWIADMLE.MSI file. 

The snapshot utility of WinInstall LE is called Discover. After running Discover, you’ll title your 
application and give the tool a location at which to store the application, as Figure 2.2 shows. 

 
23



Chapter 2 

 

Figure 2.2: Put the MSI file you are creating on a network point. 

Then, you’ll simply run the setup.exe program from your application and complete the snapshot; 
out will pop your first MSI file. 

After you have your MSI file, you could, if you were so inclined, venture into the murky world 
of WinInstall LE’s package-editing tool. At this point, WinInstall LE’s usefulness starts to break 
down. The WinInstall LE editing tool is called the Veritas Software Console, and can be 
launched via Start menu, Program Files, Veritas Software, Veritas Software Console. With this 
program, you can load an MSI package into the Veritas Software Console to manipulate your 
package, as Figure 2.3 shows. 

 
24



Chapter 2 

 

Figure 2.3: The post-editing tool is complex to navigate and negotiate. 

Trying to customize a package using this tool is difficult at best. It’s a fairly cumbersome, 
abstract, and difficult-to-use interface and requires an intimate knowledge of the relationships 
between features, components, and the like. 

SMS Installer 
The SMS Installer utility is another tool available from Microsoft for those who own and operate 
SMS environments. The SMS Installer utility was originally a Wise product. Wise licensed 
Microsoft a chunk of source code that became the SMS Installer, and Wise continued on 
developing the Wise Installer, and later, Wise Package Studio (which we’ll explore later). 

The SMS Installer is a poorly named product, but has some powerful features. It’s poorly named 
because the name suggests that this program offers only a specific installation method using 
SMS, which doesn’t incorporate all that the program does. The SMS Installer provides three 
ways to capture events and eventually create MSI files: 

• Straight snapshot (similar to WinInstall LE) 

• Via the SMS Installer Watch utility 

• Through a custom/manual script editor 

We’ll be briefly exploring each of these three methods. 

 
25



Chapter 2 

 
26

� You’ll only be able to download and unpack the setup routine for the SMS Installer if you’ve actually 
got an SMS 2.0 site server up and running. This requirement is simply a protection mechanism to 
ensure that only people who have SMS licensed and up and running are able to use the SMS 
Installer tool. You can find the SMS Installer tool at 
http://www.microsoft.com/smserver/downloads/20/tools/installer.asp.  

MSI creation is a fairly new feature in the SMS Installer feature set. Historically, the SMS 
Installer didn’t create MSI files; rather, its only output was in the form of self-installing 
executables (.EXE files.) The latest revisions of the SMS Installer can create MSI files—via both 
the SMS Installer tool and an external program called the Installer Step-Up utility (ISU). 

The SMS Installer Repackage Installation Wizard Tool 
After you’ve installed the SMS Installer and launched it for the first time, you’ll see plenty of 
options to get started, as Figure 2.4 shows. 

 

Figure 2.4: The SMS Installer has a lot of nooks and crannies. 

I suggest that you start by exploring the Repackage option, which, as you might expect, 
repackages applications. After you click Repackage, you’ll be prompted for the location of the 
setup.exe file as well as which portions of the hard drive to scan. After you provide this 
information, the first scan is performed, as Figure 2.5 shows. 



Chapter 2 

 

Figure 2.5: The repackage option starts off in a manner similar to how WinInstall LE starts off. 

) You can have the tool capture multiple installations at the same time by clicking Run Setup when it 
becomes available (after the scan completes). However, it’s best to repackage one application at a 
time as doing so lets you create individual MSI applications, as opposed to one MSI file with lots of 
applications inside.  

After the scan completes, the setup.exe program that you selected will be launched. Complete the 
program’s installation, and finish the Repackage Installation Wizard. At this point, you’ll have 
captured the setup.exe program’s actions but you’re not quite to an MSI file. In a moment, you’ll 
see two ways to make that capture into an MSI file. 

The SMS Installer Watch Tool 
In those rare circumstances in which your application is already installed (and you cannot find 
the setup.exe program) or the application doesn’t come with a setup.exe file, you can use the 
SMS Installer Watch tool, as Figure 2.6 shows. 

 
27



Chapter 2 

 

Figure 2.6: Use the Watch application when you don’t have a setup.exe program for your application. 

After running the application, SMS Installer looks for every call the OS makes to see which files 
are being accessed. When this process completes, you’ll be able to perform a caption using the 
method I previously discussed.  

This option is worthwhile in a pinch, but is ultimately not going to be as accurate as a true 
snapshot or capture. The reason is that when you use the Watch method, you’ll have to be sure 
that you’re selecting every option that the application provides. If the application is a word 
processor, you’ll have to make sure you run the spell checker, mail merge, and Help features—
everything that could possibly be selected—to ensure that every DLL, OCX, and VBX file are 
all “seen” by SMS Installer. 

The SMS Installer Script Editor 
The SMS Installer Script Editor is the most powerful feature of the SMS Installer. After you’ve 
either performed a recapture or used the Watch application, you have the option to make 
modifications to how the package is going to be installed and which options will be seen during 
the actual installation process. You perform these changes inside the Script Editor. What if you 
wanted to make sure your resulting repackage only ran on Win2K? What about making specific 
changes to certain INI files? You can do these things and more with the Script Editor, which 
Figure 2.7 shows. 

 
28



Chapter 2 

 

Figure 2.7: The SMS Installer Script Editor has ton of options for configuring installation options. 

You simply drag Actions from the left to a point in the script on the right. After the action is 
where you want it in the script, you can modify the action. For instance, if you wanted to modify 
the standard setup screens by adding some custom information, you can edit the dialog box 
within the Script Editor, as Figure 2.8 illustrates. 

 

Figure 2.8: You can customize each installation screen using the Script Editor. 
 

29



Chapter 2 

The SMS Installer Script Editor is an immensely powerful tool and has simply too many options 
to discuss in detail here. However, there are many resources that provide step-by-step directions 
for its use; I recommend Rod Trent’s Microsoft SMS Installer (McGraw-Hill Osborne Media). 
Rod also has an excellent Web site that is full of both SMS and SMS Installer information 
http://myitforum.com. 

0 If you make customized script additions (as discussed previously), then choose to make MSI files 
from them (as we're about to explore), you'll need to thoroughly test your resulting MSI files. 
Sometimes customized scripting made inside the SMS Installer will not be perfectly reflected in a 
resulting MSI file (but will be perfectly reflected in a compiled .EXE file). 

Creating MSI Files with the SMS Installer 
Your last step is to actually create an MSI file. You have two options to do so: by using the built-
in MSI Compilation Method or the external ISU utility. 

After the capture or Watch-application process is completed (as well as the optional script 
editing), you can simply choose the Build menu option to Compile As Windows Installer 
Package, as Figure 2.9 shows. 

 

Figure 2.9: You can create MSI packages directly from SMS Installer. 

When you do, you’ll see the MSI file being created, as Figure 2.10 shows. 

 

Figure 2.10: The MSI file is created from within the SMS Installer. 
 

30



Chapter 2 

Alternatively, you could use the command-line ISU utility, which converts SMS Installer self-
executables to MSI files. Figure 2.11 shows the ISU utility’s options. 

 

Figure 2.11: The ISU utility options as well as a compile. 

The ISU utility is useful when you have existing SMS Installer scripts that you want to batch-
style convert to MSI files. However, as Figure 2.11 illustrates, not every scriptable option 
converts to a perfect MSI action. When the SMS Installer converts your packages to MSI, it 
needs to make decisions about what your intentions are, and thus might perform an action on 
your behalf that you didn’t intend. In other words, you might script an action, but that action 
doesn’t work or work properly when run as an MSI. This behavior is the SMS Installer’s biggest 
shortcoming. That is, although it’s a powerful tool that creates useful self-executable .EXE 
installation files, it doesn’t always produce the best-running MSI files. In such cases, you might 
need to get into the nitty-gritty of the MSI file. To do so, you’ll need the Microsoft Orca tool, 
which the following sidebar describes. 

 
31



Chapter 2 

 

Microsoft Orca Tool 

As we’ve previously stated, each MSI file is really just a database. Microsoft provides Orca, a low-level 
tool, to let you get into an MSI file and look around. Orca is part of the Windows Installer SDK, which is 
most useful for programmers. But systems administrators can use the SDK—and Orca—to find the most 
nitty-gritty documentation for how something works within a Windows Installer executable or an MSI 
package.  

The full SDK can be found at http://www.microsoft.com/msdownload/platformsdk/sdkupdate/. If you’re not 
interested in the full SDK, you can get a subset of the SDK, which includes Orca at 
http://msdn.microsoft.com/downloads/default.asp?URL=/code/sample.asp?url=/msdn-
files/027/001/457/msdncompositedoc.xml.  

If you choose to load a file into the Orca tool, you’ll be able to see the file’s rawest elements: the tables 
and rows that make up the database, as Figure 2.12 shows. 

 
Figure 2.12: An MSI file loaded into the Orca tool. 

The frame on the left has the heading of Tables; each table represents a portion of the MSI file. The 
larger pane on the right represents each row within the table, representing a record or an entry. In Figure 
2.12, I’ve highlighted the table named File, and each row of the File table shows an entry for each file 
contained within the MSI. 

This tool isn’t the most user friendly tool for administrators, but with a little poking around you can 
discover some useful information. Specifically, whenever you use any tool to create and/or edit an MSI 
file, that tool might veil what’s really going on in the file. With Orca, you can be confident that you’re 
seeing what’s really going on in the MSI file. However, the beauty of third-party tools is that they provide 
the information that you need in a user-friendly format—the raw elements that Orca reveals are quite 
messy. So use Orca only when necessary if you suspect troubles. You can find additional information 
about the Orca tool (from an administrator’s perspective) at 
http://support.microsoft.com/default.aspx?scid=KB;EN-US;Q255905& . 

 
32

http://support.microsoft.com/default.aspx?scid=KB;EN-US;Q255905&


Chapter 2 

 
33

Commercial Third-Party MSI Tools 
Microsoft isn’t the only vendor that offers tools that can make MSI packages. Indeed, there are 
such tools available from third-party vendors. Like the SMS Installer, most third-party tools are 
dual-purpose; that is, they are capable of building scripts to get your home-grown package 
packaged and equally able to capture your application and wrap it up into an MSI package. For 
instance, you can use them to both repackage a setup.exe application into an MSI file and 
repackage the latest virus definition file components into an MSI that is prepared for 
deployment.  

The feature set of third-party tools is usually quite robust. The best ones offer additional and 
innovative capture methods as well as advanced conflict management to assist in ensuring that in 
the case of DLLs that have the same name but are different versions, the best one is used for your 
MSI. Not every tool has these advanced features, but you might not need all these features. 
Check out all the tools to see which one fits your needs. 

Commercial Third-Party Tools at a Glance 
There are quite a few third-party tools that could fit the bill for your environment. To help you 
decide, Table 1.1 shows some of the most popular third-party MSI repackaging tools as well as a 
bit of information to help you get started on your third-party MSI tool investigation.  

� The tools in this table are commercial programs. I highlight free tools in the next section. 

Tool Vendor Web site 

Wise Package 
Studio 

Wise Solutions http://www.wise.com

Wise for Windows 
Installer 

Wise Solution http://www.wise.com

AdminStudio InstallShield http://www.installshield.com
Prism Pack 
(formally Picture 
Taker) 

Lanovation http://www.lanovation.com

Unity Installer PriceWaterhouseCoopers http://www.unitysite.com/
E-Wrap Novadigm (formerly 

ChicagoSoft) 
http://www.novadigm.com

Table 2.1: Some popular third-party tools. 

� There is an additional unofficial list on InstallSite.org, a site dedicated to MSI development 
(http://www.installsite.org/cgi-
bin/frames.cgi?url=http%3A%2F%2Fwww.installsite.org%2Fpages%2Fen%2Fw2k_msiauth.htm). 
You can find another unofficial list at AppDeploy.com 
(http://www.appdeploy.com/tools/browse.asp?r=1). Note that InstallSite.org is geared for developers 
and AppDeploy.com is geared for administrators. 

Highlighting every commercial third-party tool available is beyond the scope of this chapter. 
Instead, I’ll review some of the top tools and draw attention to some of their distinguishing 
qualities. 

http://www.installsite.org/cgi-bin/frames.cgi?url=http%3A%2F%2Fwww.installsite.org%2Fpages%2Fen%2Fw2k_msiauth.htm
http://www.installsite.org/cgi-bin/frames.cgi?url=http%3A%2F%2Fwww.installsite.org%2Fpages%2Fen%2Fw2k_msiauth.htm
http://www.appdeploy.com/tools/browse.asp?r=1


Chapter 2 

Wise Package Studio 
The Wise Package Studio is a popular tool for system administrators who want to repackage 
installations into MSI tools. In fact, if you’re already comfortable with the SMS Installer, there 
are places in the Wise Package Studio that are similar to the SMS Installer, such as the Wise 
Script Editor. 

After Wise licensed the code to Microsoft for the SMS Installer, Microsoft didn’t develop the 
SMS Installer much beyond its original inception besides bug fixes, the ISU utility, and the in-
program MSI builder capabilities. However, the development of that original code didn’t stop for 
Wise. It became Wise for Windows Installer, and has since evolved to become Wise Package 
Studio. 

As I previously mentioned, there are too many features offered by third-party tools to highlight 
them all (though I will highlight some specific competitive distinguishing qualities in an 
upcoming section). Instead, I’ll highlight where the Wise Package Studio can help administrators 
most: in gaining a process around their MSI development process. 

The Wise Package Studio wraps its package creation procedure into an approach that contains 
two main parts: a process and a project. That is, you start off with a process—either a pre-
defined process or one that you define. Then, for each MSI package that you want to build, you 
leverage the process and create a new project, say, MSIFILE1.MSI. In other words, perhaps not 
every MSI file you’ll build will require the exact same set of rules to create it, and the Wise 
Package Studio is flexible in this manner to help you ensure you have a well-defined process for 
your project. In the following example, I have modified the standard process to add a reminder 
for myself to ensure that I won’t forget to virus scan before repackaging the application, as 
Figure 2.13 shows. 

 

 
34

Figure 2.13: You can modify the process with specific steps that you can customize. 



Chapter 2 

Then, when I’m ready to create a new project, I can leverage my own customized process (the 
one that includes a step ensuring that I won’t forget to virus scan). I simply create a new project, 
and pick the process that I want, as Figure 2.14 shows. 

 

Figure 2.14: Select a process for each project that you want to repackage. 

After you’ve established a process for your project, you’re ready to work inside that project. 
Again, the process is what keeps you on track when wrapping up the MSI. The interface of the 
Wise Package Studio helps keep you on that track once a project is initiated. For example, the 
program offers a feature called the Workbench, which Figure 2.15 shows, that helps with the 
repackaging process. 

 

Figure 2.15: Use the Workbench to step you through your specific process for your specific project. 

 
35



Chapter 2 

The process steps are seen on the left. Each step in the process should be executed as described 
in the notes on the right. Simply click the blue Run tags next to each step in a process, and a 
specific tool will be launched to assist in accomplishing that step in the process. Figure 2.16 
highlights the idea that each step can be associated with one or more tools. 

 

Figure 2.16: Each step in the process can correspond to one or more tools. 

Again, selecting Run for a specific task will run a specific tool. Alternatively, you could select 
the Tools tab to expose all the tools that comprise Wise Package Studio, as Figure 2.17 shows. 
Each tool has a step-by-step description of how it accomplishes a task as well as a preview of 
those tasks. 

 
36



Chapter 2 

 

Figure 2.17: Each tool may be selected individually if required. 

Wise Package Studio comes in three flavors: Standard, Professional, and Enterprise. Each comes 
with a different feature set: 

• Standard Edition—Performs basic MSI repackaging via “ad hoc” approach. Wraps up 
packages and validates that they were packaged correctly. 

• Professional Edition—Performs more advanced MSI repackaging. Geared for both a 
single administrator as well as multiple administrators working on the same project. This 
edition adds increased testing and conflict management and performs the process-
oriented approach I’ve been describing. 

• Enterprise Edition—This version is unique because it enables a full end-to-end lifecycle 
approach for MSI files. Specifically, this version allows for requests to be submitted 
about a package that an end user might want developed and can track the project’s 
progress through the life of the project. 

 
37



Chapter 2 

AdminStudio 3.5 
InstallShield is best known in the developer community for its tool that packages new 
applications—called InstallShield Developer. This tool is really a developer’s tool. In fact, it 
even hooks into Visual Studio .NET while the developer is working with it. However, 
InstallShield also offers an application that is geared toward administrators—AdminStudio. This 
product allows for both process-and-project driven MSI creation and a manner to launch 
individual tools to perform specific tasks.  

For example, with the AdminStudio’s QuickStart Guide (see Figure 2.18) an administrator can 
simply hover the cursor over one of the proposed questions, and the program will replace the 
question box with an “answer” that describes which tool will be launched. 

 

Figure 2.18: AdminStudio’s QuickStart guide. 

Alternatively, if the administrator knows which tool she or he wants to use, the administrator can 
simply select that tool from the Start menu, as Figure 2.19 shows. 

 
38



Chapter 2 

 

Figure 2.19: The individual tools are also available from the Start menu. 

After launching a tool, a tutorial for the tool is displayed. For example, as Figure 2.20 shows, 
launching the Repackager tool will launch an 8-page tutorial that you can scroll through to get a 
better idea of what the tool is supposed to do. 

 

Figure 2.20: The tutorial screens warm you up to each tool. 

 
39



Chapter 2 

After you read through the tutorial screens, you have the option to actually launch the tool. 
Alternatively, AdminStudio can be set up to have a customized “flow” process, called a 
Workflow, as Figure 2.21 shows. 

 

Figure 2.21: AdminStudio offers its Workflow to keep the projects on track. 

Workflows have defined tasks and specific tools that can be associated with the task. 
Administrators can create new projects based on specific workflows.  

AdminStudio 3.5 is really meant for a single administrator to perform the repackaging. It is not 
really a “collaborative” enterprise-ready tool allowing for an end-to-end process. This version 
comes in two flavors: Standard and Professional. Although the standard version will certainly do 
the job to get your packages into MSI format, the professional version is much more adept in the 
automated detection and correction of conflicts. 

Prism Pack 
Some commercial products are similar to WinInstall LE, but with a friendlier overall ease of use. 
Such is the case with Lanovation’s Prism Pack utility, which Figure 2.22 shows. 

 
40



Chapter 2 

 

Figure 2.22: Prism Pack “takes off” upon first launch. 

Once launched, the tool immediately begins performing a snapshot. It later provides the ability to 
make basic changes to the created package using the Prism Pack Editor (see Figure 2.23). 

 

Figure 2.23: The Prism Pack editor is basic and easy to use. 

 
41



Chapter 2 

 
42

This tool doesn’t provide the collaboration abilities, process/workflow/project guides, and 
elaborate wizards of other third-party tools. However, what Prism Pack lacks in sophistication, it 
makes up for in ease of use—it’s a solid tool that does the job of repackaging well. Sometimes 
you just need or want a tool that is simple and easy to use.  

Added Functionality 
As I’ve already stated, the idea behind third-party tools is to bring additional functionality 
beyond simple repackaging. Indeed, when choosing a tool, you might want to start with the 
marketing materials, check out the feature sets, then settle in for a test drive. Most third-party 
tools will offer the functionality you need to perform day-to-day MSI management functions:  

• Snapshot repackaging 

• MST (transform) development 

• MSP (patch) development 

• Easy package transfer to third-party deployment tools (such as SMS) 

• Customization of the MSI via script, direct edit, or other method 

• Ability to manage DLL and other component conflicts 

• Ability to key files for self-healing 

These features alone might make the ideal tool for you. However, there is still a challenge for the 
manufacturers of third-party MSI repackaging tools. Today, their challenge is to bring out new 
innovative features which either augment or replace the traditional “snapshot” methodology. I’ll 
highlight two of the vendors that are doing so and how. 

Wise Package Studio 4.0 Repackaging Innovations 
Wise Package Studio 4.0 has new functionality beyond performing simple snapshots. This latest 
version of the Wise Package Studio allows for what Wise calls Virtual Capture (see Figure 2.24). 
Virtual Capture allows administrators to perform captures on machines that aren’t totally clean. 
Such functionality is a boon for administrators, as cleaning a machine for another repackaging 
job is a major source of administrative headaches. Usually, administrators simply reformat and 
reload the machine to get back to a clean machine. But anytime a machine needs to be fully 
reinstalled, the task can take quite a while. Virtual Capture eliminates this annoyance. 



Chapter 2 

 

Figure 2.24: Virtual Capture eliminates the need for a clean system. 

AdminStudio 3.5 Repackaging Innovations 
InstallShield’s AdminStudio 3.5 also has functionality beyond simple snapshots. Its latest 
innovation is called InstallMonitor. This feature is unique because it runs while the application is 
being installed, monitors what’s going on, and actively records the changes occurring on the 
system. Therefore, there is no before or after snapshot. You simply start InstallMonitor, fire up 
the setup.exe on the application you want to create the package for, and voila. Over time, the lost 
minutes waiting for before and after snapshots can really add up. However, it’s still best to 
reimage your machine with a fresh installation after every package capture. 

Shareware and Freeware Third-Party Tools 
There is an emerging “home brew” market for shareware and freeware tools that help with MSI 
creation. Shareware tools can be useful, but ensure that if you work with a shareware vendor that 
you’ll get the same level of support as if you went with a commercial vendor. Working with a 
freeware or shareware vendor one-on-one might produce a relationship you can be comfortable 
with. And if you’re comfortable with the relationship and the product, you’ve got a good 
candidate for a useful tool.  

Two tools that fit in this category include MSICreate from Corner House 
(http://www.cornerhouse.ca/en/msi.html) and Setup2Go for MSI from Offshore Development 
Software/SDS Software (http://www.dev4pc.com/downloads.html).  

 
43



Chapter 2 

 
44

There are also two free tools that are in various stages of readiness. One is called izfree and can 
be found at http://izfree.sourceforge.net/. This program doesn’t set out to be a huge application, 
rather, it just wants to get the job done. This tool is in 1.0 alpha release, so use it at your own 
risk. The other free tool is called NInstall, and it’s not even ready for primetime, but you can find 
more information about it at http://www.chimpswithkeyboards.com/projects/ninstall/index.shtml. 

Summary 
Exposure to as many MSI repackaging tools as possible can only be a good thing. Otherwise, 
how will you know what you like? Although the Microsoft tools do an adequate job, they usually 
fall a little short in the features category. Third-party tools can be pricey, but ultimately worth it 
if you take the job of repackaging seriously. Shareware and freeware tools sound great, but be 
sure that you’re comfortable with whatever support relationship you work out with the 
developers.  

No matter which tool you investigate, remember that each tool has a different approach, user 
interface, feature set, and price point. Getting a trial copy and taking a tool for a test drive is 
really the best approach to figure out which tool is ultimately right for you.

http://izfree.sourceforge.net/
http://www.chimpswithkeyboards.com/projects/ninstall/index.shtml


Chapter 3 

 
45

Chapter 3: Windows Installer Internals 

by Darwin Sanoy 
 

Why does an administrator need to be concerned with the internals of Windows Installer? When 
Windows Installer works correctly, it provides you with some sophisticated features that save 
you time and enhance your users’ productivity. However, when things go wrong, finding the 
problem will depend heavily on your understanding of how the internals of packages work. This 
idea is applied equally to debugging vendor supplied packages as well as ones from your own 
internal packaging operations or in-house developers. A good framework for understanding 
Windows Installer internals will also give you the foundation for building good packages. 

� The Windows Installer SDK and its tools will be referenced throughout this chapter. If you do not have 
access to the Microsoft Platform SDK, you can visit the SDK online using the shortcut URL 
http://WindowsInstallerTraining.com/msisdk. This URL has been set up because the URLs for MSDN 
online are long, cryptic, and frequently move (as the MSI SDK recently did!). 

  You can also install the SDK over the Web if you want to get the tools and the documentation in Help 
file format. Visit http://www.microsoft.com/msdownload/platformsdk/sdkupdate/ and click Windows 
Installer SDK on the left navigation bar. 

Application Management Meta Data 
As we’ve already seen and discussed, the Windows Installer technology has many valuable new 
features such as self healing, improved uninstalls, and customization capabilities. A key element 
to enabling these new features is recording and referencing information that tracks how software 
applications should be installed. This information can be thought of as application management 
meta data, that is, data that references or describes other data. 

There are two distinct storage areas for management meta data about Windows Installer 
packages. The first of these locations is in an MSI package file. The internal database in this file 
stores all the information required to install a software application. The second location in which 
Windows Installer package data is stored is the Windows Installer (MSI) repository on each 
computer. The Windows Installer repository is made up of a database within the registry and 
some cached files on the hard disk. 

The Windows Installer repository gives Windows Installer intelligence when performing 
installations on demand and when self-healing. This information describes to Windows Installer 
which files, registry keys, and other configuration changes must be installed for an application to 
work correctly. 

The meta data stored in the MSI repository contains a pointer back to the original MSI file. This 
pointer is generally used to retrieve source files. The data contained in the repository (such as 
installed product codes, upgrade codes, and so on) is not retrieved from the MSI file; it is stored 
directly in the repository on client computers. 



Chapter 3 

 
46

MSI File Format 
Most of the files used by MSI utilize a special Microsoft file technology called COM Structured 
Storage. This storage technology basically creates multiple spaces, called streams, within a file. 
You can think of these streams as files within files, not unlike a Visio diagram embedded in a 
Word document. 

� COM Structured Storage does not use Alternative Data Streams. Alternative Data Streams are a file–
system–level technology available on NTFS systems that allows multiple data storage areas in the 
same physical file. 

Three Streams 
An MSI file usually has three streams: one for summary information, one for the MSI database, 
and one for storing the installation files. (Installation files can also be stored externally.) Other 
streams (such as the AdminProperties stream) might be created by various Windows Installer 
activities, but these three are the main three to start with. The many other file formats utilized by 
Windows Installer are generally variants on the MSI file format, such as 

• .MST—Transform file 

• .MSP—Patch file 

• .CUB—Validation file 

� Msiinfo.exe is a Windows Installer SDK tool that allows the summary information stream to be queried 
and updated from the command line. 

The Database 
The Windows Installer database stream contains the fundamental information required to 
perform the installation of the software application. Only items inside the database can be 
customized using transforms. Transforms are essentially database overlays that are used at 
installation time. 

The Windows Installer database is normalized. In database language, this means that to represent 
any given entity (say all the information to install a file) there may be several linked tables 
involved. 

� Although you will periodically need to view a table, a complete understanding of every nuance of the 
relationships between these tables should not be necessary if you are investing in good Windows 
Installer authoring tools. 



Chapter 3 

There are two important types of information that are contained within the database: 

• Information about the software application to be installed. This information includes 
which files, registry keys, and shortcuts should be installed. It also includes information 
about how the developer organized the package within the Windows Installer rules. 
Following the Windows Installer rules for package structures results in the software 
application being represented as Features and Components, which we will be discussing 
in a bit. 

• Information about the actual execution of the package. Figure 3.1 illustrates that the 
package execution logic is stored in the database along with the tables describing the 
software application. Windows Installer was not designed as a monolithic script 
processing engine that can only have a list of files and registry keys fed to it. Instead, 
many of the subroutines within Windows Installer are configurable by the package 
developer. A package developer can configure whether the subroutine is called at all and 
what order it is called in, and the developer can apply if-then statements to these 
subroutines to have them run only if certain conditions are true. 

� When the term software application is used throughout this book, it refers specifically to the actual 
files and registry keys built by developers that a Windows Installer package is designed to deploy. 

It is important to understand that most of the package processing logic is in the database because 
this allows it to be customized. As would be expected, an administrator can customize which 
files and registry keys are copied during a package, however, the administrator can also 
customize the original package logic built-in by the vendor. This capability provides an 
unprecedented level of customization of vendor-provided software. 

) Windows Installer actually has a small subset of SQL within it. It is used for package processing, and 
can be used to retrieve and write data to and from the database tables. To learn more, consult the 
Windows Installer SDK document “Examples of Database Queries Using SQL and Script.” A 
Windows Installer SDK script called wirunsql.vbs allows you to easily run arbitrary SQL commands on 
an MSI file. 

 

Figure 3.1: MSI database tables. 

 
47



Chapter 3 

 
48

“Open” File Format 
One of the greatest strengths to the MSI file format is that it is “open.” This does not mean that 
the MSI format is tied to the increasingly popular open systems movement; rather there is a 
specific standard for the format, and it uses existing, well-documented Microsoft file structures. 
Microsoft provides the APIs to read, open, and change these files. Because no particular tool 
vendor owns or controls the format, many tools can read and write the same MSI files. 
Additionally, a package created by a software application vendor is able to be opened by any IT 
professional. This openness allows administrators to customize vendor packages and gives 
vendors the flexibility to allow customization. 

0 Package developers can still insert custom functionality and proprietary approaches through the use 
of custom actions and custom tables—an open file format does not force package developers to 
expose everything they must do to ensure their software is installed and properly licensed. 

How Packages Describe Software Applications and Installation 
Procedures 
Windows Installer logically describes software application and installation procedures with the 
relational database mentioned earlier. The following section attempts to describe this schema in 
skeletal detail as a way of providing enough information to proceed on to more advanced topics. 
Every package engineer and administrator will have widely varying needs for more detailed 
study of this topic based on their individual experiences and company requirements for package 
building and troubleshooting. 

Your key to mastering Windows Installer is to understand its language. The essence of this 
language is the framework provided by Windows Installers management meta data. The concepts 
you learn in this section will continually crop up in the following areas: 

• Windows event logs 

• Windows Installer logs 

• Authoring tools 

• The Windows Installer SDK 

• Application deployment kits (such as the Office 2000 Custom Installation Wizard) 

• Windows Installer command lines 

• Group Policy 



Chapter 3 

 
49

Software Application Information 
Some of the tables in an MSI file store data about how the software application is structured. 
There are tables that deal with files, registry entries, INI file entries and shortcuts. Windows 
Installer also introduces a schema that describes the internals of the software application to 
Windows Installer. This schema defines two main logical entities known as Features and 
Components. Features and Components are the fundamental constructs that organize all the 
configuration details of a software application that is installed by the package. 

0 The handy term component has been severely overused in the technology industry. When used in the 
context of Windows Installer, the term Component has a very specific meaning. The term COM 
Component refers to compiled executable software that is registered in the Windows registry so that it 
can be located by many different programs. To confuse matters more, most COM Components will 
have a dedicated Windows Installer Component to define them in Windows Installer. 

Previous setup technologies did not have a way for the OS to know the details of how elements 
of software relate. (For more information about the benefits of Windows Installer compared with 
early application management technology, see the sidebar “Application Management Before 
Windows Installer.”) The developer might know that three registry keys, four DLLs, and two INI 
settings are required for the database view feature to work, but there has not been a way to 
encode this management meta data in the packaging technology or the OS to facilitate intelligent 
application management. 

Application Management Before Windows Installer 

Long before Windows Installer, several innovative companies built intelligent application management 
technology for Windows that included self-healing and other benefits. Understandably, these technologies 
are expensive and heavily proprietary—sometimes taking a framework approach that requires usage of 
proprietary distribution mechanisms to take advantage of the packaging engines. Windows Installer has 
advantages over these approaches in that: it is free, it decouples distribution from packaging (which 
allows flexibility when building deployment solutions from different technologies), it generally makes 
packages more resilient for use in many deployment scenarios, and it is owned by Microsoft (which 
means all newer versions of Windows ship with Windows Installer). 

Identification in Windows Installer 
For many administrators, this section might be your first encounter with a programming concept 
known as a Globally Unique Identifier. GUIDs pre-date Windows Installer and have been used 
in many areas of programming as a result of their ability to create unique identities. You may 
have seen them in the registry in the CLSID subkey or HKEY_CLASSES_ROOT. 



Chapter 3 

 

� GUIDs are used throughout Windows Installer to identify most elements of a software package. A 
GUID is a 128-bit integer (“2 to the power of 128” possible values). GUIDs allow unique identities to 
be assigned to objects by many independent developers without a requirement for central 
coordination. 

  To understand how GUIDs work, think of 10,000 administrators using a packaging tool to generate 
100 product codes each. None of the 1,000,000 products codes would be the same. GUID generation 
uses a special algorithm with many different seed values to ensure an extremely low probability of 
identical GUIDs being generated. 

Here are some of the package elements that GUIDs are used to identify in Windows Installer: 

• Package files 

• Products 

• Components 

• Patch files 

GUIDs are utilized directly during many Windows Installer activities. For instance, you might 
want to trigger a reinstall of an installed package and have the target computer determine from 
where the original package file was sourced. You can do so using the following command line, 
which uses the /f switch and product GUID to perform a re-install: 

MSIEXEC /f {869A369E-6BD5-42e1-B9E9-B3543A46D5F6} 

Component Structure and Attributes 
As Figure 3.2 illustrates, Windows Installer Components are the fundamental unit that define the 
functionality of the software application. Components can have many types of associated 
resources. Some resource types include files, registry keys, shortcuts, and INI file settings. Some 
new attributes that are specific to Windows Installer can also be a part of a Component, 
including entry points, keypaths, and Component Codes. Although a Component can contain 
these items, it is not required to contain all of them. 

 

Figure 3.2: Windows Installer operates on lists of Components. 

 
50



Chapter 3 

Components are the fundamental unit that Windows Installer manages. Any operation such as 
installation, maintenance installation, self-healing, and uninstall result in a list of Components 
that must be operated on to achieve the desired result. Components are also reference counted to 
prevent uninstallation when more than one application is using a shared piece of software. (For 
more information about reference counts, see the sidebar “A Brief History of Reference 
Counts.”) 

A Brief History of Reference Counts 

Reference counts (refcounts) were introduced with Windows 95. All installation programs that follow 
Microsoft’s installation guidelines increment a counter in the registry whenever a DLL is installed to a 
shared location, such as the system directory. 

For example, if four applications had installed abc.dll to the System32 directory, that DLL would have a 
refcount of 4 in the registry. If one of the applications is uninstalled (again assuming installation guidelines 
are followed), the uninstall program would simply change the refcount to 3 and leave the file in place 
because other applications are obviously using the DLL. If the refcount for a file is 1, the uninstall program 
is free to remove the file because it can assume that the program being uninstalled is the only program 
using the file. Occasionally, uninstall programs will break other software because they remove shared 
registry keys required for a DLL to work properly. Windows Installer improves on refcounts by putting 
them at the Component level. Because a Component contains all the various system resources required 
for a DLL to operate properly, these related resources will remain on the system if other software is still 
using the DLL. 

Component Name 
As Figure 3.3 shows, Components have a friendly name. This friendly name displays in most 
authoring tools. The friendly name, however, is not how a Component is ultimately identified. A 
Component is identified by its Component Code. Component names make the processes of 
authoring and updating packages easier so that we do not have to remember 128-bit hexadecimal 
integers. 

 

Figure 3.3: Component definition. 

 
51



Chapter 3 

 
52

Component Codes 
Component Codes (or Component IDs) are the identifying attribute for a Component. 
Component Codes are GUIDs that uniquely identify a Component across the world. In theory, a 
Component Code should be unique among all Components in the world. 

	 For more detailed information about Component structure and identity rules, refer to the Windows 
Installer SDK document titled “Organizing Applications Into Components” and its sub-documents. 

Keypaths 
Through the concept of a Component, Windows Installer uses meta data to model a functional 
unit of the application software it is describing. This Component definition is placed in the 
repository of any machine on to which it is installed. However, if the Component becomes 
broken, how does Windows Installer tell that the Component is not installed as defined in the 
repository? This is where the keypath comes in. 

For each Component that is installed on a computer, Windows Installer checks the existence of a 
specially tagged resource (known as a keypath) within the Component to determine whether the 
Component is healthy or in need of repair. If this tagged resource is missing, the entire 
Component is re-installed. A keypath can be a directory, a file, a registry key, or an ODBC data 
source. 

The reason that Microsoft Word still works when winword.exe is deleted is because 
winword.exe is the keypath of a Windows Installer Component. A computer with Office XP 
installed would have a Component definition in its Windows Installer repository that describes 
winword.exe. When a user attempts to use Microsoft Word, Windows Installer checks to see that 
the keypath of this Component (winword.exe) exists. If it does not exist, self-healing would be 
invoked to fix the problem. There are other details to how self-healing works that will be covered 
later. 

Among the uses of a keypath, three are very relevant to administrators: 

• Self-healing detection 

• Advertising/Install-on-Demand detection 

• User profile fix-up detection (special case of self healing) 

) Although not a formal term, user profile fix-up refers to a lesser known feature of Windows Installer 
that lets installed packages properly set up a user profile when the user has not previously used the 
application. This functionality works even when the user has previously logged on to the computer. 

  When a user starts an application, standard self-healing checks are performed. If the package is 
structured correctly, Windows Installer will perceive the lack of user information for the application as 
being “broken” (even though they never existed) and self-heal the user portions of the package. 



Chapter 3 

 
53

Entry Points and Advertisements 
Ever wonder how Windows Installer knows to get involved with repairing or installing an 
application? Entry points allow Windows Installer to proxy the startup of an application and 
perform application management tasks before the user is allowed to access the application. In 
other words, when you double-click the icon for a Windows Installer packaged software 
application, it does not actually attempt to start the application directly. The icon is a special icon 
that asks Windows Installer to find the software application and start it. This is when Windows 
Installer can use the MSI repository information, the installed application resources (files, 
registry keys, and so on), and the original package file to perform the magic of self-healing and 
install on demand. 

0 For entry points to work correctly in Windows NT 4.0, you must have a newer version of the shell 
installed. To update the shell, install Internet Explorer (IE) 4.01, SP1 with the Active Desktop or IE 5.x 
with the Windows Desktop Update. You can also update the shell when deploying a customized 
Office XP installation. See the Office XP NT deployment Web site for more details 
(http://www.microsoft.com/office/ork/xp/one/depd01.htm). 

An entry point turns into an advertised interface when any Feature that its Component belongs to 
is advertised or installed on a target computer system. When a Windows Installer package is 
advertised, advertised interfaces make it appear as though the application is installed and ready 
to use. When a Windows Installer package is installed, advertised interfaces trigger Windows 
Installer for self-healing and user profile fix-up checking. An entry point/advertised interface can 
be: 

• A shortcut (special Windows Installer shortcut) 

• A document extension (association) 

• A MIME type (Internet document types) 

• A Class ID (CLSID)—Programmatic identities used for sharing software within and 
between various applications 

0 For Windows Installer functionality to work as expected, users must launch applications from 
Windows Installer shortcuts. If users in your organization are accustomed to creating their own 
shortcuts by right dragging and dropping application executables, these shortcuts will not trigger self-
healing or any other Windows Installer functionality. Unfortunately, it is not easy to prevent users from 
doing this—it will be necessary to re-culture them through Help desk interaction and other types of 
communication. Windows Installer shortcuts created by the installation package (on the Start menu or 
desktop) can be copied to new locations. Windows 2000 (Win2K) and later allow right-dragging 
shortcuts right out of the Start menu. One drawback is that they are not upgraded when the 
underlying package is upgraded, so they may not work after a major upgrade to the software 
application. 

Advertisement of document extensions, MIME types, and CLSIDs are all accomplished by 
configuring the registry on the target computer; however, Windows Installer does not internally 
store this information as registry keys. Advertising data is stored in special tables and does not 
become registry entries until the package is installed on the target computer. 

http://www.microsoft.com/office/ork/xp/one/depd01.htm


Chapter 3 

 
54

) When first starting with Windows Installer, it can be easy to confuse advertised interfaces with 
advertising an application to users. Even if you never plan to advertise applications (make them 
appear as installed, but they actually install on first use), you will still need advertised interfaces in 
your package if you require self-healing or user profile fix-up to work properly. 

The following list provides a summary of information we have covered about Component 
structure and attributes: 

• File resources—Components can contain file resources. If a file resource is the keypath to 
the Component, it is known as the key file. If a file is not the keypath, it is known as a 
companion file. There is no practical limit on the number of files or file types that can be 
in a Component. There are, however, rules about Component structure that define when 
certain types of files should have an entirely dedicated Component. 

• Registry resources—Registry resources are registry keys that are required by the 
Component. 

• Shortcut resources (entry point)—Shortcuts are defined within a Component and must 
point to a file within the Component. Shortcuts can be advertised (entry points) or 
standard Windows shortcuts. 

• Document extension mappings and MIME types (entry points)—Document extensions 
and MIME types are configured at the Component level and point to a file within the 
Component. 

• Additional resources and attributes—Components can have many resources and 
configuration items associated with them. Some of these include: 

• Controlling and installing services 

• Making INI file entries 

• Creating directories 

• Setting environment variables 

• Configuring ODBC 



Chapter 3 

 
55

Typical Components 
When I first heard Components described, I thought they would be something like spell check 
and contain 3 executables, 14 DLLs, 10 registry keys, and so on. It turns out that this type of 
item (spell check, for example) would be a Feature that contains multiple Components. One of 
the things that helped me understand Components was learning what typical Components are 
like, as Table 3.1, Table 3.2, and Table 3.3 illustrate. 

Component Item Typical Configuration 

Keypath The code file. 
File Resources Only the code file and any required data files. 
Registry Resources COM Registration (CLSID) keys and data keys. 
Advertisements Any registry entries, extension mappings, 

CLSIDs, or ODBC data sources associated 
with the file (if any). 

Service Settings Any service control and installation items 
associated with the code file. 

Table 3.1: Executable Code Component (EXE, DLL, OCX). 

In repackaged applications, most of the registry keys for an application may be contained in a 
couple of Components (one for HKEY_CURRENT_USER and one for 
HKEY_CURRENT_MACHINE) except if they are explicitly required for a component to 
operate correctly.  For packages received from a software vendor, most of the registry keys may 
be with the primary application executable. 

Component Item Typical Configuration 

Keypath A registry key in the relevant hive that should 
always be present if the Component is 
installed. 

File Resources None. 
Registry Resources Registry keys for HKEY_LOCAL_MACHINE or 

HKEY_CURRENT_USER. 
Advertisements Any registry entries, extension mappings, 

CLSIDs or ODBC data sources associated with 
the file (if any). 

Service Settings None. 

Table 3.2: Registry key Component (HKEY_LOCAL_MACHINE, HKEY_CURRENT_USER). 



Chapter 3 

 
56

Package developers have more flexibility in areas such as Components that contain templates for 
the software application. If templates were critical to this application, each one could be a 
dedicated component. 

Component Item Typical Configuration 

Keypath The template directory or a single template file. 
File Resources All templates. 
Registry Resources COM Registration (CLSID) keys and data keys. 
Advertisements Any registry entries, extension mappings, 

CLSIDs or ODBC data sources associated with 
the file (if any). 

Service Settings None. 

Table 3.3: Templates Component (template files for software application). 

Features 
After you have a basic understanding of Components, Features are quite easy to understand. 
Features are buckets (container objects) for Components. Features have very few attributes 
assigned directly to them, they are actually the sum total of the Components contained within 
them. 

Although Features are simply buckets for Components, many of the configuration capabilities of 
Windows Installer operate on Features. For instance, you can advertise a Feature, but not 
Components. If you advertise a Feature and 3 advertised interfaces appear, you know that among 
the Components that make up that feature, there are 3 entry points defined. You can find out 
exactly which Components contain these items by examining the Components that make up the 
Feature. Features have some unique attributes. These include: 

• Windows Installer configuration commands operate on Features (installing, advertising, 
uninstalling, and so on) 

• Self-healing, install-on-demand and user profile fix-up (discussed in an earlier note) 
operate at the Feature level 

• Features can contain other Features 

• Features can be arranged in hierarchical relationships (by being contained by other 
Features) 

• Features contain Components 

• Multiple Features can contain the same Component 

• Features are NOT identified by GUIDs but rather by a Feature Identifier, which is a text 
string 

By contrast, Components do not have these attributes—they cannot contain Features or other 
Components, they cannot be arranged in hierarchies, and they are not addressed directly through 
the command line to accomplish installation and configuration activities.  



Chapter 3 

Earlier, we talked about how Windows Installer essentially operates on a list of Components. We 
can modify this concept by understanding that we specify that list of Components to Windows 
Installer by using convenient buckets called Features, as Figure 3.4 illustrates. 

 

Figure 3.4: Windows Installer operates on lists of Components that are grouped by Features. 

Most of the attributes assigned directly to Features are concerned with how these Features are 
displayed in the Feature selection dialog box presented by Windows Installer during an 
interactive install. Every package will have a root Feature that is always installed. 

Package Execution Information 
Even though the package processing engine is built into the OS, much of the engine’s 
functionality can be controlled from within a package file. This allows administrators to 
customize the actual logic used to install packages, even when packages come from software 
vendors or in-house programmers. Previous to Windows Installer, setup program processing 
logic was inaccessible because it was compiled into binary executable files (EXEs) and could not 
be altered. 

Standard Actions 
As mentioned earlier, Windows Installer is not a huge block of code that simply processes a 
package. There are many subroutines within Windows Installer that are called during package 
installation, configuration, and uninstall. These subroutines are partially configurable through the 
Window Installer database in a package. These subroutines are called Standard Actions. Standard 
Actions can be configured in three ways, they can 

• Be included or not included 

• Be reordered 

• Have if-then statements (conditions) placed on them to control their execution 

Although Standard Actions are configurable in these ways, there are still many rules about which 
Standard Actions should be included as well as ordering dependencies on other Standard 
Actions. The SDK’s Standard Action reference should be studied before attempting to reorder 
any of them. 

 
57



Chapter 3 

 
58

	 For more information about rules for reordering Standard Actions, refer to the Windows Installer SDK 
document titled “Standard Actions Reference” and all of its sub-documents. The Window Installer 
SDK files also include a template for the default set of actions that would be expected in a generic 
package. This file is called Sequence.msi and can be found in the MSI SDK directory \Program 
Files\Microsoft SDK\Samples\SysMgmt\Msi\Database. 

Custom Actions 
Custom Actions allow package developers to extend Windows Installer with just about any 
functionality they desire. Custom Actions have information available to them about the running 
installation. Only certain types of items can be called as a Custom Action. Some of the most 
relevant are: 

• Calling DLLs 

• Calling EXEs 

• Calling a VBScript 

• Calling a JScript 

• Setting a property 

VBScript tends to be the popular choice among administrators who need to create Custom 
Actions primarily because VBScript can be used for many diverse administrative scripting needs. 
In addition, VBScript is similar to other scripting languages administrators might already use. 

) Setup tool vendors also allow you to use their proprietary scripting languages as Custom Actions. For 
example, Wise Package Studio allows compiled Wise Script to be used as a Custom Action and 
InstallShield allows InstallScript to be used. 

 

� Windows Installer 2.0 has new error logging features for scripted Custom Actions. Previous versions 
simply reported that a scripted Custom Action had failed and gave the Custom Action name. 
Windows Installer 2.0 (shipped with Windows XP and Win2K SP3 and is downloadable) will log the 
actual error and the script line number where it occurred. 

Like Standard Actions, Custom Actions can have their sequence controlled and conditions 
placed on them. 

Sequences 
We have been discussing how the order of Standard Actions and Custom Actions can be 
controlled. Windows Installer also supports the ability to have multiple sets of ordered actions. 
These ordered sets are called sequences. Sequences help organize installations. There are two 
sequences involved in an interactive installation, as Figure 3.5 shows. The Install UI sequence 
contains all the actions (including dialog boxes) required to gather information from the user 
during an interactive installation. The Install Execute sequence handles changes to the system 
such as copying files and updating registry entries. This two-sequence approach is also used for 
silent installs—the entire Install UI sequence is simply skipped when an installation is run 
completely silent. 



Chapter 3 

 
59

0 Silent installations are utilized heavily in automated software deployment. Most administrator-
authored Custom Actions will need to be placed in the Install Execute sequence to ensure that they 
are executed during silent installations. 

Standard packages (built according to Microsoft templates and guidelines) also have four other 
sequences. The Advertising UI and Advertising Execute sequences are used when a package is 
advertised using MSIEXEC or Group Policy deployment. The Admin UI and Admin Execute 
sequences are used when a package is used to build an administrative install location. 

 

Figure 3.5: Sequences and actions. 

Uninstalls and maintenance installs are handled by the Install UI and Install Execute sequences. 
When specific actions are only relevant to a specific install type, such as uninstall, conditions are 
used to ensure that those actions only execute when appropriate. 

Authoring tools will represent sequences in different ways, but essentially they are interpreting a 
table that simply has the action name and an associated sequence number. There is a separate 
table for each sequence. Although a rare occurrence, package developers can create their own 
custom sequences if desired. 

Properties 
Windows Installer uses Properties to store package data before and during package processing. 
They are the equivalent of a variable in a scripting or programming language. Properties are 
similar to environment variables. As Figure 3.6 illustrates, environment variables provide system 
information (such as computer name and OS). They can also be used to store data in batch file 
scripts. For instance, a script might prompt the user to choose a menu item—an environment 
variable could be used to store that choice for later use. 



Chapter 3 

 
60

 

Figure 3.6: Set command output. 

Properties behave like environment variables and scripting variables in other ways as well: 

• Properties do not have data types, they can store numeric or string data 

• Properties do not need to be declared before use—they can be created on the command 
line, in transforms or by custom actions 

• Properties are used to store data about the system 

Properties are used store all kinds of data and control parameters. They store data and control 
parameters such as: 

• Installation progress 

• Data collected by locator tables (such as registry keys) 

• Type of installation activity (such as install, uninstall, rollback, and so on) 

• Data about the target system (such as OS version and user profile location) 

• Current date and time 

• Control information for installation activities (such as the list of features to install or 
advertise) 

0 Properties can be created on the fly, so do not assume that the property table in a package is a 
comprehensive list of all properties used or created by the package. 

Properties have several classes that determine how they can be manipulated during package 
operations. The class of a property is determined by the text case of the property name and 
whether it is in the SecureCustomProperties property or one of the built-in Restricted Public 
Properties. 

• Private Properties can only be changed by transforms and custom actions—they cannot 
be changed on the command line. Private Properties must have at least one lowercase 
letter. 



Chapter 3 

 
61

• Public Properties can be changed on the command line or in the installation UI in 
addition to transforms and Custom Actions. Public Properties must contain only upper-
case characters. 

• Restricted Public Properties can only be changed by administrators or if the 
EnableUserControl policy is turned on. Restricted Public Properties must contain only 
upper-case characters AND be either on the list of built-in Restricted Public Properties or 
added to the SecureCustomProperties property if they are a custom property. 

Any of these property types can be built into Windows Installer (known as default) or defined by 
the developer (known as custom).  

Properties are also used by MSIEXEC as command-line arguments. This can be a little hard to 
get used to because MSIEXEC also uses switches that start with the forward slash character. The 
following command line shows that applying a transform during package installation is done 
using the TRANSFORMS property rather than a special command-line switch: 

MSIEXEC /I package.msi TRANSFORMS=custom.mst 

In this example, the /I is an MSIEXEC switch and TRANSFORMS is a property. 

) When starting out with Windows Installer, it is important to familiarize yourself with all the built-in 
properties and the information they communicate or the functions they control. Consider reading 
through all the information in the “Properties” section of the Windows Installer SDK as a good primer. 

Notable Properties 
There are several notable properties that will be used many, many times. Most of them control 
how a package is installed: 

• TRANSFORMS—Specifies a list of transforms to apply to an MSI during package 
installation. 

• ADDLOCAL—Lists features to install on the local computer. 

• ALLUSERS—Controls whether installations are performed for all users of the computer 
or just the user running the installation. 

• ROOTDRIVE—Controls which drive Windows Installer installs packages on—by 
default packages are installed on the local drive that has the most free space. 

• INSTALLDIR—Controls the exact directory to which a package must be installed. 

• REBOOT—Controls whether the package requests a reboot after installation. 

	 When properties are specified in multiple places, Windows Installer has a method for determining 
which value should be used. Examine the MSI SDK document titled “Order of Property Precedence” 
for more information. 



Chapter 3 

Self-Healing Overview 
Self-healing is the ability of Windows Installer to detect and repair any critical resources that are 
required for the user to successfully launch and use the application. Every resource of a package 
is not checked during self-healing. Because self-healing occurs as the application is launched, 
exhaustive checking of every resource would lead to excessive wait times. 

Earlier we discussed how Windows Installer performs basic actions (install, uninstall, and so on) 
on lists of Components. We also discussed how these lists of Components were specified by a 
list of Features. Self-healing follows this approach as well. 

Self-healing, install-on-demand, and user profile fix-up are all variations on the same 
functionality provided by Windows Installer. Windows Installer is asked to find the appropriate 
software application when an entry point is activated by a user (usually double-clicking a 
shortcut or document type). If Windows Installer finds the software is not yet installed, it will 
immediately install it. If the software is installed, it will be verified by self-healing. In both cases, 
this happens at the Feature level. 

As Figure 3.7 illustrates, when an entry point is activated, the Component to which the entry 
point belongs is checked for which Feature it is attached to. Every component in that Feature is 
checked for non-existence of the keypaths. If any single keypath is missing, the entire feature is 
reinstalled. 

 

Figure 3.7: Self-healing component structure. 

For example, say the Component in Figure 3.7 was installed on a computer. After a couple of 
months, someone accidentally deletes the file DV.DLL. The next time the user launched the 
shortcut Data Viewer.lnk, the files DV.EXE, DV.DLL, and the registry key 
HKEY_CURRENT_USER\Software\DV\Path would be checked for existence. If any of these 
three resources were missing, the entire Feature (which is made up of the Components C1, C2, 
and C3) would be reinstalled. This is why self-healing results in much more installation activity 
than a single component re-installation. 

 
62



Chapter 3 

 
63

) Self-healing will not repair resources (mainly files and registry keys) if the keypath of the component 
they belong to is properly installed on the system. For example, if DV.DAT in Figure 3.7 was missing, 
it would not be self-healed if DV.EXE was present on the system. To compensate for this, users can 
be taught to use the Repair option in Add/Remove Programs. This option does a full re-install of the 
application and will fix problems with missing resources that are not fixed by self-healing. 

Summary of Package Structure Concepts 
Windows Installer introduces an entire level of application management meta data that is 
fundamental to creating the many new features and capabilities Windows Installer is famous for. 
Although it is not a simple task to become familiar with the structure, rules, and terminology of 
this meta data, doing so unlocks many secrets! 

Here are some of the highlights: 

• Windows Installer describes software applications using a set of database tables. 

• Major aspects of how the package is processed are also described in this database. 

• To accommodate the new paradigm for installations, new logical entities are defined by 
Windows Installer to break down the software application into manageable sub-parts. 

• These logical entities are known as Components and Features. Components and Features 
allow Windows Installer to map the relationships between specific software application 
resources (such as files and registry entries) for use in management activities such as self-
healing, sharing of application resources, and install-on-demand. 

• Windows Installer defines additional entities for managing package processing—these 
entities, known as Actions and Sequences, control the behavior of an installation package 
while it is performing installation, configuration, and uninstall activities. 

• The design of Windows Installer allows package developers to have a large degree of 
control over Windows Installer’s internal functions. This same design allows 
administrators the same level of control even after a software vendor has built its 
completed installation package—something not possible with previous setup 
technologies. 

• Variables in Windows Installer are known as properties; they store all types of control 
information and data for packages. Custom properties can be created by package 
developers. 

Figure 3.8 illustrates how all the internals of a package are utilized to accomplish installations. 
The numbers correspond to the following discussion. 



Chapter 3 

 
64

 

Figure 3.8: Package processing internals. 

Properties  are a dominant element because they are used to control installations, gather 
information from the target computer and user account, and for custom functionality. Policies  
(which are not stored as properties) are read by Windows Installer as needed; some are enforced 
before any package processing begins. Policies control many behaviors of Windows Installer—
they are covered later in this chapter. If transforms exist, they are read and applied to the package 
file . Windows Installer processes the actions contained in the relevant sequence(s) to install 
the package . Package processing causes the package Features and Components to be installed 

. This step includes copying the Feature and Component definitions into the target computer’s 
MSI repository. When Features and Components are processed, all changes are made to the 
target system, including creating registry entries  and copying files . Files are copied from 
the source , which can be stored as uncompressed, compressed CAB files, or internal CAB 
files (inside the MSI file). 

Customizing Packages
One of the most powerful benefits of Windows Installer is the ability for administrators to 
customize installation packages regardless of who built them. Previous to Windows Installer, 
most software could only be effectively customized through the use of manual installation or 
repackaging. The following list highlights some of the difficulties in software deployment that 
result from the inability to customize software installation packages: 

• Manual installation of software has very high cost. 

• User installation of software creates higher costs due to misconfiguration and end user 
self-support. 

• Repackaging introduces quality risks due to incorrectly installed software applications. 

• Repackaging might violate some software vendor’s support agreements. 

• Enterprise-wide repackaging creates additional costs and requires disciplined processes. 



Chapter 3 

 
65

Fortunately, Windows Installer has been designed with these challenges in mind. The primary 
method for customizing an installation package is known as a transform. Transforms are a 
separate file with an .MST extension. They are specified during the installation of a package. 

	 We briefly explored transforms in Chapter 1. 

After our entire installation is modeled in a database, customization is easily accomplished by 
adding, modifying, or eliminating database rows and cells from various tables. Eliminating a 
Component from an installation can simply require removal of three rows from three tables and a 
change to the value of one cell in a row of a fourth table. To add a Feature with two existing 
Components might only require new rows in two tables. 

Transforms use a concept called overlay to accomplish customization. Instead of permanently 
changing a package file’s database, overlays are done using a temporary copy of the database 
created during installation. This allows for many different customizations to be done from the 
same MSI file on disk because customizations can be picked at install time. Overlays are an 
extremely flexible method of customization because more than one transform can be used at 
once. 

Transform files are deltas, which cannot be used standalone because they only contain the 
changes you want to make to an MSI file. Anytime you want to create, edit, or apply an MST 
file, the MSI file it is based on is required to work with the transform. 

Because transforms can include changes to the package logic, they cannot be applied to a 
package that is already installed on the workstation, but must be specified with the initial 
package installation or advertisement. 

Figure 3.9 shows that a transform is just a delta of information that requires the original package 
to form a complete customized installation. It also demonstrates the overlay concept, whereby 
loading the transform on top of the MSI file gives the complete picture. 



Chapter 3 

 

Figure 3.9: How transforms work. 

When transforms are applied to a package installation, they are copied locally into a cache. 
These cached copies are applied to any subsequent reconfigurations of the application so that 
customizations stay intact. 

For packages built by administrators, transforms might be less useful because customizations can 
be integrated directly into the MSI packages. However, in large enterprises and for repackaged 
installs that have many possible configurations, transforms are an effective means of customizing 
repackaged software. 

Transforms should be used for customizing all MSI packages received from software vendors—
vendor MSI packages should not be directly edited. This is not simply a best practice, but an 
expectation and assumption of software vendors, Microsoft, and the Windows Installer SDK. 

Managed Application Settings 
Windows Installer was released with the suite of Win2K technologies known as IntelliMirror. 
Group Policy is the companion technology that provides deployment and application settings 
management by way of dynamic policy settings. Compared with Windows Installer, Group 
Policy provides superior capabilities for managing application settings because they are applied 
when users log on and at regular intervals afterward. 

Since the introduction of Win2K, many organizations have been hampered in deploying Active 
Directory (AD). Those who implement it rarely burden the directory with exhaustive settings 
management for all applications in the enterprise. This raises some challenges for package 
deployment with regard to settings that must be actively managed. 

 
66



Chapter 3 

 
67

When an application setting is made in a package file or transform, the setting usually consists of 
one or more registry entries. After the software is installed, Windows Installer will ensure that 
the same settings are made if self-healing is required or if a new user logs on and uses the 
application. 

A problem arises when one of these registry keys needs to be changed to a different value. 
Previous to Windows Installer, most administrators would run a simple script to fix up the 
registry keys on all existing machines. This can still be done, but it leaves out several important 
scenarios that Group Policies would catch: 

• Some self-healing scenarios can set the application setting to the older value contained in 
the package file. 

• New installations of the package after the fix has been set will use the older value. 

• Multi-user machines will not have the older value for all existing users. 

• New user logons to multi-user machines will have the older value. 

To handle these situations purely with Windows Installer technology would require that the 
application setting be updated in a transform. Either all computers would need to uninstall and 
re-install the software, or an upgrade package would need to be created and deployed. The later 
only works if the package is not from a software vendor because you should not create upgrade 
packages for MSI packages received from a software vendor. 

The importance of catching every one of the exceptions is relative to how critical the fix is and 
how it affects specific user communities. If the problem is blue screening computers on a stock 
trading floor, it is essential to eliminate any possibility that the old setting is put on any 
computer. If it creates a minor annoyance to users, it might not be as critical to prevent every 
case of the old setting being installed. Without some type of policies mechanism, there is no 
clear path for how to handle this issue, but it is important to be knowledgeable of it and discuss it 
early in the design of application management and packaging processes. 

) This is more of a hack than a tip. Windows Installer does not validate that a cached transform file is 
the exact same file that was used during the original install. For computer-based installations, the 
location of these files is easy to determine. Administrators can replace the cached transform with an 
updated copy and simply trigger a maintenance installation or re-install to change application settings 
after deployment. However, there must have been a transform deployed with the original installation 
for this hack to work. 

If an organization has policy setting capabilities of any type—such as NT or Windows 9x 
System Policies or third-party policy management systems—this problem can be resolved by 
using the policy mechanism. To prevent overburdening the policy mechanism with application 
settings, it is prudent to only use it for settings that absolutely must be managed. 



Chapter 3 

 
68

Creating Transforms for Application Settings 
There are essentially three common types of transform-creation tools. In the previous chapters, 
we discussed vendor-supplied tools and third-party tools that step through the user installation 
interface and essentially automate the choices a user would make during a package installation. 

In many cases, administrators will need to automate settings that are not exposed using these 
tools. Detailed settings such as the application data directory or back-end database server are 
usually only exposed in the most advanced customization tools such as the Office Custom 
Installation Wizard. 

Tier-1 packaging tools generally include a lower-level tool for creating transforms. With this 
type of tool, the package developer loads the MSI to be customized, then uses the authoring tool 
as though editing the MSI itself. All the capabilities of editing an MSI are available, but the 
changes are saved in a transform and the original MSI is left changed. 

Although these tools are very powerful, they do not assist in discovering the system changes 
(registry and INI files) that equate to configuration changes performed from within the software 
application. A configuration monitoring tool must be used to actually discover the required 
settings. You might be able to use the repackaging portion of your MSI packaging tool or select 
any tool that can effectively monitor and report system changes. 

� Wise Package Studio Professional has a very helpful HTML-formatted “change detection report” that 
is automatically created in the same directory as the package. The report does not automatically 
display, so you have to know its there to use it. This report is a great source of information for finding 
which registry keys and INI settings were changed while configuring a software application. 

Here is a method for creating transforms for advanced settings using the tools and skills you are 
already familiar with: 

1. Start up the software application you want to customize. 

2. Start your configuration change monitoring tool (such as your repackager). 

3. Proceed to make the desired configuration changes to your software application. 

4. Ensure that these changes are “committed”. This step may require some experimentation 
due to the differences in how software applications are programmed. Many applications 
will save configuration changes when you click Apply or OK in the configuration dialog 
box. Keep an eye out for software applications that delay the saving of configuration 
changes until a later time or until you exit the application. 

5. Stop your change monitoring tool. 

6. Examine the output of the change monitoring tool. 

7. If your transform tool allows importing of registry data directly from the computer on 
which it is running, open the transform tool and create a new transform. Use the output 
from the configuration monitoring tool to determine which registry entries to copy from 
the current workstation into the transform. 



Chapter 3 

 
69

� The last step in this procedure is counterintuitive to many packaging processes. This is because 
extremely clean packaging processes usually call for the package editing tool to be run on a separate 
computer from the repackaging tool due to the changes made to a workstation by the package editing 
tool. In this case, the package editing tool is being used to copy only selected items from the 
repackaging workstation, not to generate the initial package as it is with repackaging. 

 

� There are several interesting transform tools and scripts in the Windows Installer SDK: 

  Wigenxfm.vbs and Msitran.exe can generate a transform by comparing two MSI files. For scripting, 
this is the only way to actually create a transform. 

  Wiusexfm.vbs and Msitran.exe can permanently apply the contents of a transform to a database. 

  Wilstxfm.vbs lists the contents of a transform in a command window. 

Using Transforms 
Transforms must be specified during installation or advertisement of an application. The 
switches used for each of these scenarios is quite different. In Chapter 1, we briefly explored 
how to apply transforms to an existing MSI package. To review, here is the command line for 
applying a transform when installing a package: 

MSIEXEC /i mypackage.msi TRANSFORMS=mycust.mst 

The special public property TRANSFORMS causes the transform to be applied. Here is the 
command line for applying a transform when advertising a package: 

MSIEXEC /j[u,m] mypackage.msi /t mycust.mst 

For advertising, a special switch and sub-switch are used for transforms. The /j switch indicates 
that the package will be advertised. The /j switch is directly followed by a u for a user-based 
advertisement or an m for a computer-based advertisement. The /t switch is a sub-switch of the /j 
switch, and can only be used in conjunction with the /j switch.  

0 It can be easy to get confused and attempt to use the /t switch with the /i switch. 

Administrative Installs 
Chapter 1 briefly discussed administrative installs. In this section, we will dive a little deeper. 
Administrative installs are not really installations of a package, but rather a special preparation of 
your package to allow it to be installed from a network. A client installation must still be done 
for each computer that needs to run the software application. 



Chapter 3 

 
70

The following is a list of the main uses for an administrative installation. Knowing this list will 
help you understand whether they can play a useful role in your environment. 

• Pre-setting properties with the AdminProperties property—With normal installations, 
double-clicking an MSI file results in the full installation interface and no special 
command-line properties are applied. This can result in leaving out the TRANSFORMS 
property, which might cause important customizations to be omitted. Administrative 
installations allow the administrator to specify a list of properties (not MSIEXEC 
switches) to be used when the MSI is double-clicked. This is useful if you have 
distribution scenarios in which users are either directed to run MSIs from the network or 
they can easily find them on the network. 

• Served applications—Windows Installer natively supports running applications 
executables from a server rather than from the local hard drive. This is known as Run 
from source in Windows Installer. To do this, an administrative installation must be 
created. A unique aspect about Windows Installer served applications is that they can be 
fault tolerant. If multiple administrative installations are made available and specified as 
sources for the applications files, Windows Installer will check the list of sources until it 
finds one that is available. 

• Pre-activation of Microsoft products—Microsoft Products that require activation can only 
be pre-activated if they are setup as an administrative install. There are other ways to 
ensure that activation does not require user intervention. 

• Reduce back-end replication—In large networks, the amount of data passed over the 
network to distribution servers can cause network load problems. Because administrative 
installs can be patched, using administrative installs can reduce back-end (server to 
server) replication. Patches have the potential to dramatically reduce the amount of data 
transfer required because they only contain binary deltas of files that change between two 
versions of a package. The benefits of reduced bandwidth for maintenance must be 
balanced with the uncompressed format of administrative installs—which use up to twice 
as much disk space as an MSI that has the application files compressed within internal or 
external CAB files. 

• Extract only needed files from a software CD-ROM—Many software vendors send out a 
single, large CD-ROM that has all or most of their software packages—especially if their 
software is under site or blanket licenses. Some CD-ROMs may contain files required to 
deploy applications in multiple spoken languages. Such a CD-ROM might contain more 
than 400MB when all that is needed is a 10MB application. Performing an administrative 
installation with the desired MSI file will extract only the needed files to the network. 
This approach only works if the individual applications on the CD-ROM have their own 
MSI files rather than one large MSI file. 

) Administrative installations are also required to create patches. Most authoring tools will automatically 
create the administrative installations for you if they do not exist before you start the patch tool. 



Chapter 3 

Building and Using Administrative Installs 
During an administrative install, the package is prepared to be installed from the network. Figure 
3.10 illustrate that this process extracts all files into a directory structure and copies the MSI 
(without embedded files) to the root of the administrative install location. If used, the 
ADMINPROPERTIES value is also embedded as an additional stream at this time. An 
administrative install share is created by using the /a command-line switch with MSIEXEC. 
When performing an administrative install, there is usually only one dialog box requesting a 
network location for the install. Windows Installer does not check whether the location is 
actually on the network, so this location can be local if you are simply testing a package. Here 
are a couple samples command lines for setting up administrative install shares: 

• MSIEXEC /a mypackage.msi 

Prepares the package in the directory specified on the wizard dialog box that appears after 
this command line is run. 

• MSIEXEC /a mypackage.msi ADMINPROPERTIES = 
”TRANSFORMS=mytrans.mst” 

Prepares the package in the specified directory and embeds the special property 
ADMINPROPERTIES to be used upon client installation. 

• MSIEXEC /a mypackage.msi /p myfix.msp 

Applies a patch to an existing administrative installation. 

 

Figure 3.10: Creating an administrative install. 

 
71



Chapter 3 

Installing from an Administrative Share 
Client installations operate the same as installing from any other installation source. Clients 
install from the administrative share using the standard command line or by double-clicking the 
MSI file located on the administrative share, as Figure 3.11 illustrates. 

 

Figure 3.11: Client install from an administrative install. 

Serving Applications 
Over time, there have been many terms used for the concept of leaving the software application 
files on the server and having the client execute them from there. For our discussion, we will 
refer to this as served applications. One of the most notable uses for served applications is for 
implementations that require high availability. Having an application installed on multiple 
servers allows for fault tolerance when a server fails. Windows Installer supports fault-tolerant 
served applications. 

0 Some packagers attempt to build Windows Installer packages for legacy served applications without 
using Windows Installer’s native support for served applications. The legacy approach is to point 
icons to existing binaries located on the network. However, Windows Installer does not allow a 
shortcut to point to files that are not contained in the current package. A popular workaround is to 
copy traditional .LNK shortcuts to clients. Although this approach works to a limited degree, the 
shortcuts will not trigger any Windows Installer activities such as self-healing and install-on-demand. 
The native support must be used to avoid extensive workarounds and enable the full Windows 
Installer feature set. 

Figure 3.12 shows two key properties used to configure Windows Installer packages for fault-
tolerant served applications. The ADDSOURCE property causes the Windows Installer shortcuts 
to look for the application files at the administrative install location. ADDSOURCE takes a list 
of features as its value, the special value ALL indicates that all features should remain on the 
server. The SOURCELIST parameter causes the package installation to include a list of 
additional locations at which the software application files can be found. 

 
72



Chapter 3 

 

Figure 3.12: Served application configuration (fault tolerant). 

Here is the basic process for setting up fault-tolerant served applications: 

8. Create an administrative installation of the application. 

9. Replicate the administrative installation to multiple locations or perform additional 
administrative installations with the EXACT same package (package codes should 
match). 

10. Install clients using the ADDLOCAL and SOURCELIST properties. 

Windows Installer does not perform load balancing between the various sources for the 
application. If this is desired, a load-balancing file system technology such as Win2K’s 
Distributed File System (DFS) should be used. Manual load balancing can be accomplished by 
ensuring that an equal number of clients perform the initial install from each server location. 

	 Chapter 5 will contain a more in-depth look at Windows Installer source lists. 

Security and Policies 
Windows Installer security and policies is an area of great interest to administrators. Security and 
policies give some of the flexibility required to design an application deployment approach that 
is secure from viruses and end-user abuse. Proper attention to Windows Installer security and 
policies helps address the following significant risks: 

• Viruses that take advantage of MSI security capabilities 

• Security exploits by users, administrators, or hackers 

• Unauthorized software installs on corporate machines 

• Software piracy 

 
73



Chapter 3 

 
74

This section will focus on key policies in Windows Installer and new Windows XP policies for 
controlling which applications can be installed. As a point of clarification, this section discusses 
how to configure Windows Installer service settings using policies, not how to deploy Windows 
Installer packages using Group Policy-based application deployment. 

0 If you work in a very large organization, it is important to consider that Help desk and first-level 
administrators might have the technical savvy and physical access needed to abuse elevated 
privileges. Protecting against these types of exploits requires a different perspective than just having 
to consider internal end users and external hackers. 

Windows Installer Policies 
As with most technologies introduced with Win2K, Windows Installer is configurable through 
policies. However, unlike many Win2K Group Policies, Windows Installer security policies are 
registry-based. In practical terms this means that AD and special policy processing agents are not 
required to manage these polices. Any mechanism currently used to mass deploy registry tweaks 
can be used to effectively configure MSI policies. This includes initial computer build, 
distribution of .REG files, third-party policy management systems (such as those provided by 
NetWare), and Windows 9x and NT System Policies. 

� An updated System Policy template (.ADM file) is available for download at 
WindowsInstallerTraining.com. This .ADM file includes two new MSI 2.0 policies as well as the debug 
policy. This updated policy file can be downloaded from http://windowsinstallertraining.com/msiebook. 

The following discussion will focus on the essential Windows Installer policies that should be 
considered by administrators. These policies generally deal with securing Windows Installer’s 
elevated privileges capabilities. 

	 For an exhaustive list of Windows Installer Policies, refer to the Windows Installer SDK document 
titled “System Policy” and all its sub-documents. 

Elevated Privileges Implementation 
There are some basic concepts of elevated privileges that should be understood before diving 
into the policies that configure them. Whenever an MSI package is installed, an instance of 
MSIEXEC.EXE is started in the user’s context. This occurs, as Figure 3.13 shows, whether the 
package is started by double-clicking an MSI or if MSIEXEC.EXE is called via a batch file, 
logon script, or software distribution system. 

	 We will be discussing elevated privileges and software distribution systems in more detail in Chapter 
5. 



Chapter 3 

 

Figure 3.13: Elevated privileges implementation. 

An elevated installation is one that uses administrative rights for a portion of the installation. If 
elevated privileges are requested and approved, an inter-process communication occurs between 
the instance of msiexec.exe that is started in the user context and the instance running as a 
Windows service. If elevated privileges are granted, the security rights of the system account are 
utilized for the activities performed by the service. Windows Installer enforces strict rules about 
the data that is allowed to cross the IPC connection and what types of commands can be 
performed on the service instance of MSIEXEC.EXE. This approach is more secure than the user 
context switching approach provided by tools such as the NT Switch User utility or Windows 
XP’s RunAs functionality. 

0 It might be tempting to change the account used by the Windows Installer service as a method of 
preventing abuse of the System Account. This is likely to create difficulties for your installations and 
should be unnecessary given the built-in and policy-based security controls in MSI. 

Managed Applications 
Windows Installer gives selected applications Managed Application status depending on how 
they are installed. Packages that come from any of the following sources are considered 
Managed: 

• Assigned through Group Policy to users (Advertised) or computers (Full Install) 

• Assigned using the MSIEXEC command line by an account that has local administrative 
privileges on the target computer (Advertised or Installed). 

• Deployed through SMS 2003 (beta name was Topaz) 

Managed Application status gives a software installation elevated privileges during the initial 
installation and for all subsequent installer operations such as self-heal, install-on-demand, 
maintenance installs (adding/removing features), and uninstalls. That is to say, packages that are 
tagged as Managed on a specific computer continue to have elevated privileges for subsequent 
installation activities on that computer. These elevated privileges continue to operate 
independent of the original reason that granted the package Managed status. 

 
75



Chapter 3 

 
76

) Unlike traditional setup.exe installers, the Windows Installer engine is not only used during initial 
installation of a package. The Windows Installer engine is active in all phases of the application 
management lifecycle, including deployment, installation, configuration (adding/removing portions of a 
software application), self-healing, upgrades, and uninstalls. 

Always Install with Elevated Privileges (AlwaysInstallElevated) Policy 
The AlwaysInstallElevated policy is the most permissive configuration of elevated privileges and 
should be used sparingly. This policy must be set to 1 (Enabled) for the computer AND the user 
to be completely enabled. This policy allows all packages and installation activities to occur with 
elevated privileges regardless of their source or the user account that starts them. This policy is 
intended to permit all installation activities to complete normally for non-administrative users (as 
they would under Windows 9x) but do so without giving away local administrators rights that 
grant many more capabilities than application installation. 

0 Managed Application status is NOT given by using the AlwaysInstallElevated policy settings. If 
packages are installed with this policy turned on, and the policy is subsequently turned off, 
subsequent install activities are limited by user rights. This can hamper self-healing, application 
upgrades, and uninstalls. 

AlwaysInstallElevated Hacking 
Some organizations have used the two AlwaysInstallElevated keys as a method of 
programmatically controlling elevated privileges. Under this approach, security on these policy 
keys is configured to allow them to be changed by a wrapper script. The wrapper script will 
toggle the policy keys on, perform an MSI installation, then turn them off. Although this 
functionality is convenient, it has a couple downsides that should be taken into account. First, 
this approach might cause problems for self-healing or when the user attempts to reconfigure the 
application through Add/Remove Programs because the user will no longer have administrative 
rights to perform installation activities. Second, security exploits and viruses generally test for 
“security by ignorance” techniques such as these. There are probably valid scenarios in which 
using this method is acceptable—just make sure you are aware of the risks if you are considering 
it. 

Disable Windows Installer (DisableMSI) Policy 
The DisableMSI policy has three settings: 

• 0 (Default) = Always Enabled 

• 1 = For Non-Managed Packages 

• 2 = Always Disabled 

The value 0 means MSI is always enabled. The value 2 means that it is always disabled. There 
are very few circumstances in which completely disabling MSI is desirable. The value 1 restricts 
package installs to only be allowed from three sources: Group Policy, SMS 2003, or assignment 
by an administrator. 



Chapter 3 

 
77

The For Non-Managed Packages value is usually of interest to organizations that want to restrict
users from installing unauthorized software packages. This can be an effective approach
LAN-based environments, but it does create limiting s

 
 for 

ituations for offline package deployment. 
If you have the luxury of deploying Windows XP you might want to consider software 
restriction policies (which will be discussed shortly). 

) The Disable MSI policy overrides the more permissive AlwaysInstallElevated policy. If both are turned 
on, AlwaysInstallElevated is effectively disabled. 

Cache Transforms in Secure Location on Workstation (TransformsSecure) 
Whenever transforms are used for an installation, Windows Installer caches them on the
computer. This allows them to be applied to all subsequent installation activities. If a transform
can be replaced by an end-user or IT personnel, their copy will be executed during any 

 local 
 

 
 

t 
rms are 

always cached in a secure location regardless of whether a user or computer installation is 
entations, this policy should be enabled. 

 
istribution or re-

engineering application management, a full study of the security focused policies of Windows 
ckground necessary to make wise design choices. 

 
There are several useful non-security policies in Windows Installer. The following section 

s 

ices on OS versions that have system restore 
re 

 all roll back 
data is deleted. System restore allows the system to be arbitrarily returned to any restore point 
that is still in the system restore cache—this could be days after an installation. 

subsequent installation activities. If the application has Managed Application status, replacing
cached transforms can allow malicious code to take advantage of local administrative rights.

For packages that are installed for users, transforms are cached in the user profile to suppor
roaming profiles. When the TransformsSecure policy is used, it ensures that transfo

performed. For security sensitive implem

Other Security-Oriented Policies 
Most of the remaining security-oriented policies have their most restrictive setting by default. If
an organization is deploying a new version of Windows, deploying software d

Installer will provide the ba

Non-Security Policies

discusses these policies. 

Excess Recovery Options 
There are two policies that deal with how Windows Installer ensures that failed installation 
changes are backed out completely. Windows Installer has built-in support called rollback. Thi
support is built-in to Windows Installer and works on all versions of Windows. Windows 
Installer also interfaces with system restore serv
(Windows XP and ME). When system restore is present, Windows Installer requests a resto
point before performing installation activities. 

There is one key difference between these two recovery technologies: The native rollback 
support is only used during an installation; if an installation completes normally,



Chapter 3 

 
78

For many organizations, having both of these options active just consumes extra disk space and 
extends package processing time. For production use, Windows Installer’s built-in support 
should generally be left on. Windows Installer’s usage of system restore could be turned off if 
desired. Each organization should test install and uninstall times with system restore both on and 
off and decide whether the impact is significant for typical software installation scenarios in their 
company. 

Windows Installer’s use of system restore is disabled using the 
LimitSystemRestoreCheckpointing computer policy. Setting it to 1 prevents Windows Installer 
from requesting a system restore checkpoint during installations. 

0 The LimitSystemRestoreCheckpointing policy only affects Windows Installer’s usage of system 
restore. System restore will continue to be leveraged by the OS for all other non-Windows Installer 
activities. 

Windows Installer rollback is disabled using the DisableRollback policy. It is configurable for 
both the computer or user—setting it to 1 in either location will cause rollback to be disabled. 

) There is one situation in which you might want to disable both Windows Installer rollback and system 
restore for package installations. In some large scale deployments of Windows, an extra hour of 
workstation build time can be a critical cost and project management factor. In deployment scenarios 
in which computers are formatted and rebuilt, turning off these policies can reduce build time. 
Because a failed workstation build can be easily restarted, there are no risks to eliminating rollback 
capabilities. 

Logging Policy 
Windows Installer always logs information to the Windows event logs. In many cases, this 
information is sufficient for routine problem analysis. If more detailed data is required, the 
logging policy can provide it. To say that Windows Installer logging is exhaustive would be an 
understatement.  

	 The SDK document titled “Event Logging” lists all the messages that Windows Installer might record 
in the event log. 

The logging policy is used to cause Windows Installer to create log files for all of its activities. 
Although the command-line logging options trigger logging for a specific package installation, 
the policy covers all installation activities, including self-healing, maintenance installs, and so 
on. There are 11 single-character switches that can be used to configure logging. Each of them 
logs specific types of information about the installation. When troubleshooting difficult 
packaging problems, it is a good idea to put the log in complete verbose mode so that no helpful 
information is missed. 

) armup—this is an When configuring verbose logging, the 11 switches can be arranged to spell voicew
easy way to remember the switches, and they can be entered directly in this order. 



Chapter 3 

 
79

When the logging policy is used to configure logging, no file location can be specified. All 
Windows Installer log file names have the following naming convention: 

“MSI<randomcharacters>.LOG” 
For user-initiated installs, the log is placed in the user’s TEMP directory. For automated installs 
(such as GPO deployment), the log is written to the system TEMP directory. 

	 We will be discussing more details about logging in Chapter 4. 

Software Restriction Policies 
Software restriction policies are a new addition for Windows XP and .NET Server. Software 
restriction policies can enable or prevent execution of many types of files in Windows, including 
.MSIs and .MSTs. Because these policies are processed before Windows Installer is started, they 
are a very effective way of preventing unauthorized software installations. Software restriction 
policies are not a complete substitute for managing Windows Installer policies. 

	 Microsoft has a good white paper that summarizes software restriction policies at 
http://www.microsoft.com/windowsxp/pro/techinfo/administration/restrictionpolicies/default.asp. 

Software restriction policies have four types of rules, discussed in the following sections. Each of 
these has different implementation considerations when used with Windows Installer. 

Certificate Rules 
Certificate rules allow restriction of software installations by requiring that MSI files and MST 
files are code signed with the specified certificate. If they are not signed, Windows will not allow 
them to be passed to Windows Installer for processing. Code signing is extremely powerful, but 
the following considerations should be taken into account when considering its usage: 

• Administrative installs can change structure of the MSI file, so code signing must occur 
after the administrative install is made. In addition, the “master” administrative install 
needs to be replicated to preserve the code signing. 

• Vendors might code sign their own installations. Removal of vendor code signing can 
cause problems if the vendor validates their own signing. The vendor’s certificate can be 
added to your software restriction policies if need be. 

• Any changes to the package require that it be re-signed. 

• Signing certificates are usually accessible by a very few people in the IT organization, 
which can inadvertently become a bottleneck to the packaging process if a large volume 
of packages and transforms are expected. 

Hash Rules 
Hash rules are very similar to certificate rules, except that hash rules do not alter the original file 
and they do not require a certificate to generate the cryptographic key used by the policies. 
Hashes can make it easier for administrators to restrict MSI execution without the elaboration of 
certificates and they may be just as effective at preventing users from installing unauthorized 
software. The MD5 hashes required for this type of restriction can be easily generated within the 
Group Policy interface. Hash rules would have the same limitations as certificate rules, except 
for the possible process bottlenecking. Hash rules would also leave vendor signed packages 
unchanged. 

http://www.microsoft.com/windowsxp/pro/techinfo/administration/restrictionpolicies/default.asp


Chapter 3 

 
80

Path Rules 
Path rules allow restriction of software installations by requiring that MSIs and MSTs run only 
from specific path locations. At first, this sounds limiting, however, path rules can be defined 
using wildcard characters, environment variables, and DFS share names, making this rule type 
very flexible. Here are some planning considerations if path rules sound like they will work for 
you: 

• The repository strategy must be well defined to ensure that paths are consistent. 

• A strategy for offline installs must be worked out to ensure that it fits with the use of path 
rules. 

• Path rules that are too flexible may allow users or administrators to create a path that 
mimics the path rule and execute their own package from that location. 

Zone Rules 
Zone rules are only used for MSI files. They permit or restrict browser-based software 
installations from occurring based on the Internet zones in IE. The default zones include Internet, 
Intranet, Restricted Sites, Trusted Sites, and My Computer. These rules can be helpful for 
building a Web-based, self-service installation system. 

Combining Rules 
Multiple rules of all four types can be used in combination to create fine-grained control over 
software installations. Rules that are the most specific to the file being assessed take precedence 
over rules that are more general. 

0 If you are using Windows XP with Win2K domain controllers, you must load the Windows Server 
Administration Tools from the Windows .NET Server CD-ROM onto a Windows XP workstation to 
configure software restriction policies in AD. 

Summary 
This chapter has laid the foundation for delving into the next level of Windows Installer 
technology. In addition to covering the basics of the internal structure of a package, we brought 
out some unique ways of building and utilizing transforms, administrative installs, and policies. 
Hopefully, the techniques you have learned will help you build more effective and secure 
packages. 

In the next chapter, we will be discussing best practices for building packages. Get set to learn 
about repackaging, upgrades, and building processes!



Chapter 4 

 
81

Chapter 4: Best Practices for Building Packages 

by Darwin Sanoy 
 

In Chapter 3, we laid the groundwork for a better understanding of the internals of a Windows 
Installer package. Understanding the internal structures of a package and how packages are 
processed is critical to building packages. I highly recommended that you read Chapter 3 before 
reading this chapter. 

� This book is focused on managed environments because administrators work in managed 
environments. A backdrop of managed environments has two major implications for the topic matter: 
Managed environments imply the engineering of practices and processes to ensure that work is done 
in a manner that is repeatable and high quality. In addition, a managed environment is contrary to the 
Windows Installer SDK, which must assume the worst case for package deployment (the worst case 
being a completely unmanaged target environment for packages). 

This chapter is roughly separated into two main sections. The first section discusses practical 
best practices that are generally applicable to administrative package developers in all types of 
organizations. The second section focuses on critical concepts required for formulating your own 
best practice in areas that depend heavily on your company’s approach to application integration, 
desktop computing support, and how IT is paid for in your company. 

If you are brand new to Windows Installer packaging or need to brush up on the practical nuts 
and bolts of building a package, there are several good sources for package-building tutorials. 
One is provided in the SDK, using the Orca editor in the SDK. Others are provided on 
Microsoft’s Web site and in the Help files of popular authoring tools. 

� The Windows Installer SDK contains a tutorial—look for the document “Windows Installer Examples” 
and all subdocuments. There is also a WinINSTALL LE tutorial on Microsoft’s site. 

Best Practices Formulation 
Building best practice is always challenging. It involves the artful mixing of the best practices, 
rules, processes, and limitations of the underlying technologies with organizational technology 
management objectives and business value drivers (for example, reduced TCO) to yield 
company-specific standardized best practices and processes. 



Chapter 4 

The more complex the technology, the more difficult it can be to formulate best practice. This 
chapter intends to give some guideposts and recommendations to get started in formulating your 
company’s practices and processes. Some of these suggestions will be broad reaching and high-
level. Some of them will be more practical. If used as a starting point for your best practices, all 
of them have the potential to save many dollars and many hours of rework. Figure 4.1 illustrates 
the combination of technical factors and company specific concerns to yield viable best 
practices. 

 

Figure 4.1: Best practice formulation. 

For best practice formulation, the Windows Installer SDK is the guiding light. Like any technical 
document, the SDK makes assumptions about its audience and the environment in which they 
are working. The SDK does not preclude managed environments or the idea of administrators 
building packages; however, it lacks qualifying perspectives for helping administrators build 
packages for managed environments. These assumptions can lead to rules and regulations that 
require significant effort but yield nominal gains for administrators. In this chapter, we will 
examine some of the underlying assumptions of the SDK—particularly because these 
assumptions can create angst for administrators attempting to build best practices and processes 
for their organizations. 

0 Analyzing the assumptions of the SDK is done by asking “What problem is this feature/function/rule 
meant to address?” Most of the answers for the Windows Installer SDK have the perspective of 
building commercial software for potential global distribution by software developers with the 
possibility of tailoring by administrators. This perspective assumes an unmanaged environment—that 
there is no repackaging and that administrators do not build packages. 

 
82



Chapter 4 

 
83

Best Practice Is Not Optional 
There was a time when application installation was so simple that best practices could be 
formulated as you discovered and engineered around problems. In some cases, requirements 
were simple enough that best practices were less crucial. In many cases, projects are just too 
rushed or technology professionals are not accustomed to formulating and following best 
practices. The complexity of Windows Installer requires best practices to be formulated and 
followed to ensure high-quality packaging. There is a good chance for packaging difficulties for 
any company that ignores best practice when packaging in Windows Installer. Unlike previous 
packaging technologies, this prediction will likely hold true for all types of IT environments, 
even if they are small or simple. 

� This chapter assumes that you are using a tier-1 Windows Installer authoring tool for administrators. 
These tools intelligently use a default initial package structure that saves significant effort for 
administrators who do not need to learn every nuance of basic package structure before becoming 
productive in building Windows Installer packages. 

Darwin’s Law of Technology Sophistication 
You are probably wondering What is the big deal, it’s just packaging technology?! Over time I 
have formulated the following law that helps me understand the answer to that question: 
Increased technical sophistication results in increased complexity. 

Any technology that makes a leap in sophistication also makes a leap in complexity. In other 
words, to give life to functionality such as self-healing, install on demand, and transforms 
requires many more gears, belts, and pulleys working in the background. In the case of Windows 
Installer, the additional complexity is managed by package developers, while the end user 
experience becomes simpler. 

The essence of the new complexity in Windows Installer is the application management meta 
data, such as features and components, that must be built correctly for packages to be processed 
as expected. Microsoft has made this meta data extremely flexible to suit many types of 
customizations; however, there are strict rules that are base assumptions of the entire technology. 
The Windows Installer service, which will process your packages, lives by these rules 
religiously—if you do not know and follow them, your packages might behave in ways that you 
did not intend. 

� In Chapter 3, I mentioned that some companies have built packaging and deployment tools that 
possess much of the functionality now contained in Windows Installer. Professionals who work with 
these technologies must also deal with more complexity to gain the sophisticated features these 
technologies promise. 



Chapter 4 

 
84

Repackaging Best Practice Recommendations 
Repackaging has a fairly long history in technology terms. The need for repackaging was 
realized around the time that Microsoft released Windows 95. For most corporate environments, 
a company’s Windows 95 deployment project represented the first attempt at an engineered and 
standardized desktop computing environment. Initial migrations of the entire desktop computing 
base required that applications be redeployed. Standardization was the mantra of these 
migrations, so it made sense to look at standardizing software delivery for the initial migration as 
well as for long-term software delivery. 

Complete automation of application delivery was a very crucial factor in reducing TCO. If every 
application continued to be installed from the original vendor media by a technician, desktop 
support costs would remain very high. 

It didn’t take long to discover that many of the setup technologies used to package software 
applications could not be automated. The technologies made the age-old assumption that 
installations were performed by an individual sitting at the computer answering interactive 
prompts. Attempts at automating the interface of existing setup programs were problematic 
because users could interrupt the process and some automation technologies could not always 
identify the dialog boxes and had problems dealing with differing screen resolutions. 
Repackaging was conceived to solve these problems. 

Essentially, repackaging attempts to monitor which changes are made to a workstation. During 
the years after the Windows 95 release, many applications were still 16-bit applications upgraded 
to be compatible with Windows 95. Most applications didn’t use the registry and were fairly 
simple installations that in many cases could have been accomplished using file copies and 
creating shortcuts. As a result, these simple applications required very basic repackaging tools to 
be successfully deployed. 

The reasons that companies have taken up repackaging have changed over time. Initially, the 
TCO gained through complete automation was the most important driver to repackaging. By 
gaining control over exact configurations and allowing deployment without human intervention, 
repackaging dramatically reduced the cost of application deployment. After companies had all of 
their applications in the same packaging technology, they quickly realized that many DLL 
conflict issues could be handled proactively. Because the software application’s file set was now 
openly viewable in the same packaging engine, IT professionals could force all packages to use 
the same DLL version (provided that the standard version was tested for compatibility with all 
applications). With the advent of Windows Installer, many IT organizations are eager to obtain 
its TCO benefits for all software applications, even those that have not been packaged in 
Windows Installer by the software vendor. A significant portion of the overall Win2K TCO 
proposition rests on the idea that all software applications are packaged in Windows Installer. 



Chapter 4 

 
85

Do Not Repackage All Types of Setup Programs 
There are several software installations that should not be repackaged. It is always advisable to 
check readme files and installation instructions to see if they contain cautions about repackaging. 
The following items should not be repackaged: 

• Service packs, hotfixes, and system extensions—This category includes updates to core 
Windows services such as Windows Media Player or DirectX. These items should not be 
repackaged because they make extensive system changes and perform special procedures 
(such as hotfix uninstall directories or binary file edits). 

• Device drivers, network protocols, and system agents—All of these items do extensive 
enumeration of existing settings and resources on any computer before integrating 
themselves. Enumeration looks for existing configurations before deciding the best 
settings for the new installation. For instance, if you install Microsoft Office and there is 
not a previous HTML editor, the installation might make Word your HTML editor. 
However, if another HTML editor is identified, the installation might not make Word 
your HTML editor. Some of the installation types in this category use arbitrarily assigned 
identifiers (such as protocol binding numbers) to install into specific areas of the system. 
Arbitrarily assigned identifiers can have different values on two otherwise identical 
systems. A classic example is two machines that have three network protocols installed. 
Although they appear identical, they might have different binding numbers as a result of 
troubleshooting that involved de-installing and re-installing a network protocol. 

• Anything that updates Windows File Protection should not be repackaged—Although 
Windows Installer 2.0 is capable of updating Windows File Protection, repackaging tools 
do not currently monitor for Windows File Protection updates. Only updates from 
Microsoft can change the files protected by Windows File Protection. 

• Any package that comes with a deployment kit (such as the Internet Explorer 
Administration Kit—IEAK) is best left in its original packaging. When a vendor puts the 
effort in to building a deployment kit, it can indicate that there are some extensive or 
tricky configuration activities occurring in the setup. 

0 Windows Installer packages from software vendors should never be repackaged. Repackaging a 
vendor-provided MSI package will completely restructure the package, lose all package processing 
logic (for example, custom actions), and make it unrecognizable to future upgrades from the software 
vendor. 



Chapter 4 

 
86

If you determine that you should not repackage an installation, you might consider using a 
Windows Installer package as a wrapper. An MSI wrapper simply uses custom actions to run the 
setup.exe (and uninstall command) silently. The wrapper script from Win2K SP1 is a good place 
to start (subsequent service pack wrappers are a little more involved than necessary for most 
wrappers). MSI wrappers are only necessary if Group Policy is your only available deployment 
mechanism or if Windows Installer is your only available source of administrative rights during 
deployment. If you have a distribution system capable of running setup.exe directly, you should 
use it instead of an MSI wrapper to deploy the application. 

0 The recommendation not to repackage specific items does not mean that it is impossible to 
repackage these types of setups. However, the cost of doing so can be quite high. To get a complete 
picture of the total cost of doing so, monitor the effort spent in repackaging any of these types of 
setups as well as any long-term support issues with the software application being repackaged. 

Have a Documented Desktop Reference Configuration 
A desktop reference configuration defines how the standard corporate desktop is to be built. In 
some organizations, these specifications are broad, telling which OS versions and virus software 
should be used. In other organizations, they document every setting on the base OS. There are 
many reasons why a documented desktop reference configuration is a good idea; however with 
repackaging, creating and using this reference is a vital step in ensuring that packages built on 
the reference configuration will be truly portable to all desktops. Reasons for using a desktop 
reference configuration include: 

• Ensure that the changes detected by repackaging tools will be accurate for all desktops to 
which the package will be deployed. 

• Ensure that integration testing, packaging, and deployment occur on the same assumed 
configuration. 

• Allow large-scale, multi-division or global projects to be on the same reference 
configuration. 

Use Clean System Reloads for Testing and Packaging 
Whenever building or testing packages, ensure that the desktop is reset to the reference 
configuration. You can do so using a drive image product, automated build process, or by using 
the virtual capturing technologies built-in to repackaging tools, such as Wise Solutions’ Virtual 
Capture and SmartMonitor or InstallShield’s InstallMonitor. VMware’s VMworkstation is also a 
very flexible solution for quick “cleaning” of packaging workstations. 



Chapter 4 

Why Clean Machines? 
Repackaging technology all works similarly. The basic idea is to detect which changes have been 
made to a system by a setup program. Historically, repackaging tools have done so using a 
method known as snapshotting. This method involved recording the state of all the existing files, 
registry keys, and other configuration elements on the package developer’s workstation (before 
snapshot). The package developer would then run the setup program, install the appropriate parts 
of the application, and configure the application to work correctly. The repackaging snapshot 
tool would be run again to compare the differences between the stored before snapshot and the 
current state. The data collected during the snapshotting session was used to generate a package 
in the repackaging tool’s native format. 

This approach worked well for simple configurations but did not always reliably detect all the 
configuration items required to make the application work. For instance, if a DLL file needed by 
the application was already on the target system with a newer version, this file would not be 
detected because this file would remain the same for the before and after snapshots. 

Advances in Windows APIs, starting with Win2K have allowed repackaging tools to take new 
approaches to discovering the changes made by setup programs. These new methods actually 
start the setup program as a child process and watch it as it runs. One method involves 
monitoring the Windows APIs on the developer workstation for file system and registry access 
attempts by the child process. All access to these system areas can be tracked, even when the 
access does not result in a change to the system. 

Another approach emulates the file system and registry to the installation program. As changes 
are made, the emulation layer appears to make changes to the real system; however, it is actually 
recording the changes that the setup program is making. Figure 4.2 illustrates that these 
discovery methods can monitor which changes are made while they have the setup program 
running as a child process. 

 

Figure 4.2: Repackaging technology monitors setup changes in real time. 

These advanced methods of discovering changes are available in tier-1 authoring tools, such as 
Wise and InstallShield. 
 

87



Chapter 4 

 
88

0 Repackaging tools’ new discovery capabilities are a big step forward for the quality of change 
detection but they do not amount to complete reverse engineering capability. For instance, they 
cannot detect the internal logic decisions of setup programs. For example, suppose that a setup 
program will install 20 files and 7 registry keys only if you have Microsoft office on your computer. 
Repackaging tools’ new capabilities will be able to accurately determine that these files and registry 
keys were installed, but will not report that it was the presence of Microsoft Office that caused them to 
be installed. 

Additional Management Data for Packaging 
There are two additional types of management data that may be required when fitting packaging 
into your application deployment approach. Unfortunately, you cannot directly extend the MSI 
repository data to include custom elements as you can do with Windows Management 
Instrumentation (WMI). 

The first type is data required to ensure that all packages can be installed without human 
intervention. Some software applications may require the name of a local database or mail server 
to be completely automated. To be completely automated, the package will need to receive this 
data and automatically configure the software with the data. It is important to ensure that this 
data can be automatically sourced at the target workstation. In some cases, scripts will be able to 
extract the data or automatically determine the values based on other workstation data. For 
example, if the first three characters in the computer name indicate the site at which the 
computer is installed, a package could parse this information and automatically determine the 
appropriate database server for that site. Some of this data might need to be stored locally as a 
matter of initial workstation setup, then religiously updated during the change/move/retire 
process for workstations in your organization. Logon scripts and environment variables are also 
popular ways to provide this data. 

The second data type is tracking and logging data that goes above and beyond what is provided 
by Windows Installer natively. For instance, many IT departments want to know whether ABC 
Software was installed by their in-house customized package or directly from the original 
installation media (potentially missing critical fixes or customizations). 



Chapter 4 

There are many ways to store and retrieve both types of additional data. A fundamental guiding 
principle is to store it locally with remote accessibility and/or roll it up into inventory. Local 
storage with central accessibility prevents your packages from assuming that specific network 
resources or server connections are available during package installation. Such assumptions 
prevent your packages from successfully running when remote users are offline or network 
resources are unavailable. Here are some places that you might store this data: 

• INI file—Locally accessible, possible remote accessibility, can be stored on the network 
if necessary 

• Registry—Remotely accessible and locally accessible, easily understood (as Figure 4.3 
shows) 

• WMI—Remotely and locally accessible, roll-up into Microsoft SMS, uses database 
tables—good for advanced applications, WMI filtering in .NET allows GPO targeting 
based on WMI data 

 

Figure 4.3: Registry storage of management data. 

Windows Installer Best Practices 
Windows Installer represents more than just a standardization of installation technology by 
Microsoft. It is a large shift in the idea of how installations happen. It has shifted the basic ideas 
from a script-driven model to a data-driven model. In the past, script-driven approaches were 
somewhat similar to writing a batch file—a set of sequential commands evaluated in order within 
a single process. Now, installations are built by filling in rows in many different tables within a 
database. In addition, the management meta data (features, components, and so on) introduced 
with Windows Installer is another shift in thinking about installations. These fundamental shifts 
enable many exciting new capabilities, but also introduce challenges to the way we think about 
installations. 

 
89



Chapter 4 

 
90

In Chapter 3, we talked about some of the essential constructs used in Windows Installer to 
accomplish installations. To start becoming more familiar with Windows Installer, I recommend 
reading the following SDK selections. Reading specific sections of the SDK exhaustively is not 
meant to be a memorization exercise, rather it broadens your ideas of what Windows Installer 
can do and helps you make mental note of capabilities that you might need down the road. 

• Properties—Read all the documents in the SDK section titled “Properties,” including all 
the sub-documents of “About Properties,” “Using Properties,” and “Property Reference.” 
You might be surprised how many properties there are for configuring packages and 
controlling installation behavior. 

• Standard Actions—Read all the documents in the SDK section titled “Standard Actions,” 
including all the sub-documents of “About Standard Actions,” “Using Standard Actions,” 
and “Standard Actions Reference.” Make note of the information regarding how specific 
actions must be ordered and what you can accomplish through changes in the order. 

• Policies—Read all the documents in the SDK section titled “System Policy,” including 
all the sub-documents of “User Policies” and “Machine Policies.” 

Invest in Training 
When taking on Windows Installer, you are learning a new way of thinking about installation 
activities, a new technology, and new tools. This information is a lot to absorb. It is worthwhile 
to seek out formal training in your preferred format to ensure the best possible experiences as 
you get started with Windows Installer. 

) A few of the companies that offer Windows Installer training include Wise Solutions, InstallShield, and 
DesktopEngineer.com. 

Invest in Good Tools 
For many of the same reasons that training is important, you should invest in solid Windows 
Installer tools. These tools help in the many difficult tasks involved in administrators’ jobs for 
packaging. Good tools also assist with the learning curve by providing reasonable default 
settings for tables, sequences, and so on. 

Authoring tools also help prevent mistakes in situations in which complex tasks require many 
changes to many tables in Windows Installer. Tasks such as isolating an application can be very 
daunting to configure manually. Many authoring tools have integrated best practices throughout 
their wizards and editing interfaces. The authoring tool will issue warnings and advice when a 
package developer attempts to perform activities that might not produce the desired results or are 
in violation of Windows Installer rules. 

Chapter 2 explores authoring tools. The following sections talk about these tools from the 
perspective of what to look for in a good authoring tool. 

) If you are not convinced of the value of good authoring tools, I suggest that you perform the tutorial in 
the SDK that walks through building, transforming, and upgrading a package using Orca and other 
resource kit tools. You can search the SDK for “Windows Installer Examples” to find these tutorials. 



Chapter 4 

 
91

Basic Packaging Functionality 
Any authoring tool chosen for basic package building should include the following functionality: 

• Repackager—The repackager should be accurate and reasonably fast. It is important that 
the repackaging tool allow for file and registry exclusions that can be configured by the 
package developer. 

• MSI editor—A good editor for MSI packages should do much more than allow editing of 
MSI tables as Orca allows. A good editor should provide a high-level interface that 
ensures that all tables are properly maintained when the package developer performs 
functions such as “Add a Feature.” In addition, every possible setting in an MSI package 
should be available—some tools use alternative file formats during package editing and 
simply compile them into the MSI file format. This approach can be extremely limiting if 
it leaves out MSI functionality deemed to be unnecessary for administrator-built MSI 
packages. For example, a repackaging tool might not allow the order of COM component 
registrations to be controlled; in some instances, the order of these registrations is critical 
for successful installation of an application because the registrations are interdependent. 

• Transform tool—Transform tools should at a minimum allow for the full capability to 
customize the underlying MSI file. Full-featured editors take an approach of using the 
MSI editor but make the specified changes to an MST file instead of the MSI file itself. 

• Patch creation tool—Patch creation is an involved process that can become downright 
overwhelming without a solid patch creation tool. 

Advanced Functionality 
Tier-1 tool vendors such as Wise and InstallShield provide additional value-added tools that are 
worth consideration. These tools usually carry a higher price tag, but if the functionality they 
provide is used by your organization, the productivity gains are significant. All tier-1 tools do not 
provide the following functionality, and the tools’ features sets change frequently—be sure to 
consult the latest version of the available tools to determine which capabilities they offer. 

• Upgrade management—When a package is being built to upgrade another package, there 
are specific rules that the upgrade package must follow. These rules help coordinate 
package structure and ensure that upgrades behave as expected. Some Windows Installer 
authoring suites provide tools that examine the previous version of a package and the 
upgrade package to give warnings, advice, and automatic fixes to ensure that upgrades go 
smoothly. 

• Interactive debugger—When difficult logic problems arise within your package, nothing 
substitutes for a good debugger. Debuggers help you discover when there are logic errors 
in your package; generally, a value is not being set as expected. For instance, because you 
can create Windows Installer properties on the fly, it can be easy to mis-key a property 
and have critical data put into a misspelled property. 

� For those familiar with the Microsoft Script Debugger, Wise Package Studio Professional interfaces 
with Microsoft’s debugger directly. If you have the script debugger installed, the Wise debugger will 
step right into your VBScript custom actions and use the Microsoft Script Debugger to step through 
the actions one line at a time. 



Chapter 4 

 
92

• Application isolation—If application isolation is a part of your application integration 
strategy, make sure you have a tool to assist you with this unwieldy task. 

• Workgroup management—Features such as package source control (check-in/check-out), 
security, and centralized tool configuration are available for large teams and 
geographically dispersed teams. 

• Workflow automation, documentation, and project management—Workflow features 
(such as enabling the authoring tool itself to be scripted for making standardized package 
edits) reduce quality problems associated with manual editing. Other workflow features 
include shuttling a packaging project through request and approval processes. 
Documentation and project management are facilitated through workflow checklists, 
signoffs, and project status reports. 

• Conflict and package structure management—These tools are in a class unto themselves. 
These tools read all of your packages and provide analysis and resolution services for 
inter-package problems. The possible problems that can occur between packages include 
problems with conflicting software application resources (such as DLLs) and conflicting 
application management meta data (such as component and package GUIDs). If you 
currently have a requirement to ensure that a large body of packages integrate seamlessly, 
you will want to examine conflict management tools. 

Peripheral Features 
Some products offer features that may or may not provide substantial value to your particular 
packaging needs. The following list gives examples of such features. These capabilities must be 
analyzed on a case by case basis. 

• Legacy script conversion—These tools will convert pre-Windows Installer versions of 
the same vendor’s scripts into Windows Installer packages (for example, InstallShield 
setup.exe projects into InstallShield MSI projects). Some tools convert scripts from other 
companies’ legacy packaging technology (for example, Novell ZENworks packages into 
Wise Windows Installer packages). In general, most packaging tools only convert the 
most rudimentary basics of what was in the previous packaging technology—even if it 
was their own technology. Files, registry keys, and shortcuts will usually be converted. 
Any advanced packaging logic or before-and-after procedures will generally not be 
converted. If you have a significant base of repackaged software in a non-Windows 
Installer format and do not have the original setup programs, you will most likely get 
higher quality results from repackaging these legacy scripts than using conversion 
utilities in the authoring tools. 

• Package validation—Microsoft MSI and Windows logo package validation can be done 
using tools available in the Windows Installer SDK. If a tool provides only basic 
validation, the tool isn’t doing anything more than running the standard validation 
routines and presenting the results. Some tools, however, are coming up with some 
innovative value-added features for validation by allowing custom validation scripts to be 
created, standard validation rules to be filtered, and resolution rules to be set up to correct 
validation problems. 



Chapter 4 

 
93

• Distribution system interfacing—For the most part, tools that help deploy packages into a 
specific distribution system only provide the most basic job setup. In many cases, the 
distribution job created by this type of functionality must be customized. In addition, 
your company change management and/or security controls might prevent direct creation 
of distribution jobs by package developers. 

Administrator vs. Developer Tools 
Because administrators utilize Windows Installer in different ways, tier-1 vendors such as Wise 
and InstallShield have tool suites targeted at administrators. I have had many conversations with 
individuals who spend incredible amounts of time attempting to work around problems with a 
developer-targeted authoring tool that are easily handled by the administrator version of the same 
tool. If you are using the developer version of your vendor’s toolset, it is important to take some 
time to determine whether you are losing productivity to unnecessary workarounds. 

� A case in point for using administrator versions of tools is how repackaging exclusions are handed in 
Wise for Windows Installer (developer product) and Wise Package Studio (administrator product). 
Wise for Windows Installer’s repackager is for the convenience of a software developer in building the 
initial Windows Installer package. As such, it does not exclude any of the captured settings because 
the developer knows intimately what system elements are part of their software application. 
Administrators using this product find themselves doing extensive package cleanup and manually 
building exclusion lists. By contrast, Wise Package Studio has a good set of initial exclusions, offers 
advanced exclusion management, and allows exclusion of the entire base-build and changes caused 
by reboot. In addition, Wise Package Studio has a special repackage wizard that allows 
administrators to choose to include detected changes that were excluded during capture and exclude 
detected changes that were included during capture before they are formatted as a Windows Installer 
package and are much more difficult to locate. 

Manage Your Windows Installer Engine Version 
There are many versions of the Windows Installer engine runtimes. Generally, they all support 
backward compatibility fairly well. Occasionally, there are problems with packages written for a 
specific version. You must know the oldest version that should be supported in your environment 
and it is best to manage the runtimes to a specific version. As with all infrastructure technology, 
you should test a planned upgrade of the Windows Installer engine before deploying it broadly. 

Know How Windows Installer Interacts with Other Technologies 
Windows Installer is aware of and coordinates with many of the new technologies in Win2K and 
later. How Windows Installer interacts with these technologies might have a bearing on your 
packaging or application-integration strategies. These technologies include: 

• Windows File Protection (WFP)—Windows Installer checks with WFP; any files that are 
protected are not copied. 

• System restore—On OSs that support system restore (Windows ME and Windows XP), 
Windows Installer will request a restore point before making changes. 



Chapter 4 

 
94

• Application compatibility services—Win2K and Windows XP (and Windows Server 
2003) include technology in the kernel to allow applications to maintain compatibility 
beyond the release of Windows they were designed for. Application compatibility can be 
tailored by administrators for aging commercial software and in-house software. 
Windows Installer will check for compatibility customizations when installing software. 

• Application isolation—Windows Installer packages can configure software applications 
to be isolated as per Microsoft’s recommendations on Windows 98 and later and Win2K 
and later. 

Configure Policies and Security 
Windows Installer’s elevated privileges provide some great new capabilities as well as create 
additional security risks. Windows Installer policies and related policies such as software 
restriction policies should be reviewed from two perspectives: 

• What functionality can be leveraged to enforce IT policies (such as not installing 
software that is not on the authorized list)? 

• What needs to be done to secure our environment from abuses of Windows Installer? 

0 When formulating an approach to security, it is important that you also consider viruses that can be 
designed to automatically attempt many different types of exploits. Any security scheme or policy 
scheme that relies on the ignorance of hackers or users might not protect you against well-written 
viruses. 

Ensure Source List Management 
Almost every administrator has run straight into this problem: The classic case occurs when an 
MSI package was installed from a network location or CD-ROM that is no longer available. The 
location might be unavailable for a various reasons (for example, the location has been moved or 
retired, the network share names have changed, or the computer might not be connected to the 
network from which the software was installed). When Windows Installer attempts to self-heal 
an application, the user is prompted to provide the original installation source. Upgrading 
products that share components will sometimes cause this dialog box to display for a software 
package other than the one you are upgrading at the time. For example, installing a software 
package that integrates with Microsoft Office might require an optional feature of Microsoft 
Office, this, in turn, causes Windows Installer to prompt for the Microsoft Office source files 
because they cannot be found automatically. Adding or removing features from an existing 
software application can cause this prompt and in rare cases uninstalling an application may 
cause the prompt to appear as well. 

The fundamental difficulty is that the user experience is the opposite of one of Windows 
Installer’s core value propositions—fewer problems due to missing files. Users are possibly 
more confused than they were by the messages they used to receive about missing files. Now the 
system prompts them for a file system location that implies they should know how to resolve the 
situation—and understandably, many of them will attempt to resolve the problem before calling 
for support. 



Chapter 4 

 
95

Whenever Windows Installer requires a file for self-healing or install on demand it will attempt 
to locate the original package file to obtain the file. The source list is a list of locations where 
Windows Installer should look for the package source files. There is one source list per package. 
When a needed package is not found at any location specified by its source list, the user is 
prompted for the missing MSI file. 

Source list management benefits from a two-pronged approach. One prong is to design, build, 
and maintain an approach for where packages will be located. How to design a package 
repository will be covered in more detail in Chapter 5, but it bears emphasis when talking about 
source list management. The second prong is to take measures during package building to ensure 
that packages can be located when needed. 

Repackage Existing Packages Rather than Convert Them 
Many organizations have investments in legacy repackaging technology. Some have hundreds or 
thousands of working repackaged software applications. Many MSI tools are capable of 
converting scripts’ built-in legacy packaging technology. For the most part, these conversion 
filters bring over only the most basic parts of the package. Most legacy repackaging technology 
has capabilities to provide customization in the form of scripting or proprietary directives 
configured in the package source. 

An alternative approach to converting these scripts is to repackage them from the legacy 
repackaging technology into the new tool. Doing so will ensure that the results of all custom 
coding in the old packaging technology will be captured. Repackaging your repackaged 
applications will allow you to handle a significant number of the packages with less loss. There 
might still be cases in which the repackaging should be done from the original source media of 
the software vendor—especially if the legacy package was created for an older OS. In addition, 
you might encounter cases in which custom functionality will need to be ported from the legacy 
repackaging technology. 

Use VBScript for Custom Actions and Other MSI Scripting 
The ability to use VBScript is an excellent complimentary skill to Windows Installer packaging. 
Windows Installer allows custom actions (custom functionality in a package) to be coded using 
VBScript. VBScript is quite rich in functionality and can be extended with many scriptable 
components already installed on Windows and available freely on the Web. If you are working 
with Windows Installer 2.0 (Windows XP and later), errors in your scripted custom actions will 
be noted in the MSI log along with the line number of the script in which the error occurred. In 
addition, VBScript can be used for other types of related scripting: 

• Custom package validation—For examining packages for validation checking. These can 
be built as custom Internal Consistency Evaluators (ICEs) or simply scripts that run in 
WSH. 

• WMI scripts that use the MSI Provider—These scripts can be used to remotely manage 
packages. 



Chapter 4 

 

� WMIC is a command-line processor for WMI that is built into Windows XP. It must be used from a 
Windows XP workstation, but it can be used to manage any computer that runs WMI regardless of 
the OS. WMIC is very powerful and allows you to perform very useful management activities from the 
command line. For instance, the single command line that Figure 4.4 shows will inventory all 
Windows Installer packages on every computer listed in the file “computerlist.txt” and put the data in a 
comma separated values file called test.csv. It might take a two or three page VBScript to do the 
same operation. 

   
  Figure 4.4: WMIC software inventory of many computers using a single command line. 

• Package management—Scripts can manipulate package files directly and can be designed 
to operate in a batch mode that lists all packages in a directory tree and processes each 
one. 

• Installed package/repository management—Scripts can be used to retrieve data from the 
MSI repository and perform installation and configuration and uninstall activities. 

• Package launch—Scripts can be used to manage the launching of an MSI package. This 
functionality is helpful for ensuring prerequisites are available and for custom logging or 
reporting solutions. 

� If you will be doing MSI scripting outside of custom actions, there are many sample VBScripts in the 
SDK with full explanations in the SDK documentation. Search the SDK for “Windows Installer 
Scripting Samples.” In addition, the SDK section “Automation Interface” details all the API calls that 
can be made from a script. 

VBScript is also versatile for many other administrator needs such as workstation build 
automation, general utility scripts, Web page scripting, HTML applications, Microsoft Office 
automation, and so on. 

) Authoring tools such as Wise and InstallShield allow their legacy scripting languages to be used for 
custom actions. If you have a significant skill and code-base investment in these languages, you 
might shorten your learning curve and leverage your current skills by using those scripting languages 
instead. Keep in mind that these languages do not have versatility beyond packaging and they might 
tie you to that specific vendor’s packaging tools and possibly create additional requirements for your 
packages. 

 
96



Chapter 4 

Run Package Validation 
At first, package validation appears to generate a flurry of confusing and semi-relevant 
information. However, as you become more familiar with the various errors and warnings, the 
fog begins to clear. Figure 4.5 shows the output from the SDK validation tool MsiVal2. Other 
authoring tools will use the same .CUB files, so their messages will be the same even if they are 
presented in a different interface. Package validation of all in-house and vendor packages can 
save significant time when problems are discovered before packages are deployed broadly. 
Authoring tool vendors are also putting more effort into filtering and extending package 
validation to make it much more useful to administrators. 

 

Figure 4.5: MsiVal2 package validation output. 

� MsiVal2 is part of the Windows Installer SDK. It must be installed by clicking msival2.msi in the Bin 
directory of the SDK directories. After you install it, you must use Explorer to locate misval2.exe in 
…Program Files\Msival2. 

Perform a Dry Run with Verbose Logging 
When performing package testing, you should turn on verbose logging. There are problems that 
might not show up in compiling or validation that are shown clearly in a verbose log. The 
package might have problems with the reference platform that do not show up in testing and 
validation. Figure 4.6 shows the level of detail contained in a verbose log. There might also be 
package validation errors that are hard to interpret or find the source of—a verbose log of the 
same package might give additional clues as to the source of the problem. 

 

Figure 4.6: A Windows Installer verbose log. 

 
97



Chapter 4 

 
98

Utilize Windows Installer’s Logging Capabilities 
It is a good practice to formulate an approach to logging Windows Installer activities to aid in 
troubleshooting problems in production environments. The following areas of logging should be 
considered when building this approach: 

• Windows event logging—Windows Installer always logs to the event logs. Support 
personnel might need to be trained to look here and to be familiar with the messages 
Windows Installer may generate. 

• Windows Installer logging policy/registry key—Turning on some level of logging 
(possibly verbose logging) for all packages ensures that problem diagnosis information is 
available when needed. Only by configuring the policy will all Windows Installer 
activities be logged verbosely, including self-healing and other automatic background 
activities or user chosen activities. 

• Windows Installer command-line logging—If verbose logging is not configured globally, 
it can be configured on a case by case basis depending on the deployment phase of a 
package (for instance pilot deployments) or how critical the package is. 

• Use the status MIFs with SMS—If you have SMS, remember to use the /M switch with 
msiexec.exe to generate status MIF files. Doing so will ensure that MSI package errors 
are forwarded into SMS’s status reporting system where alerts and reports can be 
generated. 

Formulating Your Own Processes 
Now that we’ve explored the practical best practices that are generally applicable to 
administrative package developers in all types of organizations, let’s shift our focus to the critical 
concepts required for formulating your own best practices. The following sections explore how 
areas that depend heavily on your company’s approach to application integration, desktop 
computing support, and how IT is paid for in your company will affect your formulation of best 
practices and packaging processes. 

Windows Installer SDK Assumptions 
The Windows Installer SDK is an obvious source for information when formulating best 
practices. Earlier, we discussed that the SDK has several assumptions about its audience and how 
they utilize packaging. Figure 4.7 shows how we will refine these assumptions by applying 
additional administrative uses of packaging technology. 



Chapter 4 

 

Figure 4.7: Process building guidelines for administrators. 

� References to “company” or “corporate” environments should be interpreted to mean any 
organization with managed IT, including non-profit, educational, government, and military institutions. 

The following assumptions must be re-evaluated in the light of how administrators need to use 
Windows Installer technology: 

• Scope of distribution—The SDK assumes that you are building a commercial software 
package that has the potential to be installed on any Microsoft desktop OS running on 
any computer in the world. It makes sense that the SDK assumes the broadest case of 
distribution for a package. It is this assumption of global distribution that can lead to 
difficulty adapting SDK rules and regulations to a managed environment (with a limited 
number of OS versions, a limited number of computers, and a known set of applications). 
No discussion is given within the SDK to alternative approaches in the context of 
managed environments. 

• SLA for installation—Most of us expect that new software setup packages (of any kind) 
might break the computers on which the packages are being installed. It is simply not 
realistic to expect that software vendors could successfully integrate with every 
configuration variation in the world. With administrators, however, the SLA can be 
ruthless in regard to breaking existing software. Administrators have a more defined 
scope of integration but the service level might require that packages prepared by the 
administrative community (as well as the software applications they contain) will never 
conflict with one another. The looser service level agreement for commercial developers 
is more of a de facto expectation than an SDK assumption, but it is related to the scope of 
distribution. Commercial software developers have a vast scope of distribution with a 
best effort service level for breaking existing software.  

 
99



Chapter 4 

 
100

0 A d efined scope of integration does not mean that the task is simple; making 4000 to 5000 
applications seamlessly integrate across 80,000 desktops is still exceptionally complex. 

•  

 

rce code or have a relationship with the 

es 

• ll 
 this 
ents. 

 

•  

plications of the rules and regulations that must be 

• d 
g 

• 
d 
n 

 in-house 
developers, it can be much less cost effective for the in-house developers to build 
packages with the assumptions required for globally deployed commercial software 
because in-house developers’ environments are generally much more managed. 

Control of application source code and development methodologies—This assumption is
a significant outgrowth of the assumption that package creation is done primarily by 
commercial software developers. The Windows Installer SDK might require changes to
the underlying software application (for example, renaming or relocating DLLs). These 
changes cannot be accommodated by administrators who are repackaging software 
because the administrators do not own the sou
software developers. In some cases, administrators are responsible for developing the 
packages for in-house software and still cannot affect such software application chang
due to release timing or political boundaries. 

New packages only—The SDK generally assumes that Windows Installer packages wi
only be built by software vendors for a new release of software they own. Under
assumption, there is clear ownership and sequencing of component code assignm
This assumption does not account for repackaging in situations in which thousands of 
administrators in thousands of companies assign their own randomly generated
component codes for the same software (for example, Adobe Acrobat Reader). 

Knowledge of SDK and the package creation learning curve—The SDK also assumes
that the package developer will have a significant amount of time to invest to 
understanding all the nuances and im
followed before building packages. Windows Installer does not easily lend itself to a 
“learn as you go” approach. This task is challenging even for developers who are 
accustomed to learning new APIs. 

Role of administrators—The SDK generally assumes that administrators will be involve
in the customization and deployment of existing MSI packages rather than buildin
packages. This assumption does not prevent administrators from getting to know 
Windows Installer well enough to build packages, but it does not acknowledge that the 
administrator’s environment is very different than commercial software vendors. 

In-house developers—In-house developers are also omitted from the SDK in many ways. 
This omission affects administrators as well because most organizations have a varie
mix of in-house development teams, some of which rely heavily on the administratio
team for packaging and deployment skill sets. Although the SDK can be used by



Chapter 4 

 
101

Most of the assumptions made by the Windows Installer SDK are sensible for the broadest cases, 
but they can be difficult to adapt to the rules and regulations of managed environments. Reading 
SDK statements with these assumptions in mind can help you understand where the SDK rules 
can be adapted to fit your organization. 

0 In Chapter 3, I mentioned that one of the reasons administrators need to know packaging internals is 
to diagnose problems with vendor-provided MSI packages. SDK familiarity follows this principle as 
well—you must be familiar with the baseline knowledge to discover when a software vendor has 
made a mistake in their package, and you stand a better chance of negotiating an agreeable course 
of action if you can talk their talk. 

Package Classifications 
Package classifications are crucial to building processes. Processes and practices become 
overburdened when there are too many possible scenarios that generate many branches in the 
process. Creating a classification structure helps ensure that the minimum number of process 
alternatives is required and that no particular classification of activity is left under serviced or 
unserviced. 

The SDK assumes a single package classification—commercial software with the potential for 
worldwide (unmanaged environment) distribution. Once again, although the SDK does not 
preclude in-house developers, it does imply a distribution environment very different from what 
in-house developers have. 

The scheme for classifying packages that I present here is not the only way to build a process for 
packaging. However, the concept of understanding and defining your package classifications 
before building your processes is crucial to ensuring that the process reflects reality and will 
work for your organization. The classification scheme presented here is focused on 
accommodating administrators’ usage of Windows Installer technology and the historic state of 
packaging in managed corporate environments. The following classifications should be 
consolidated as much as possible, and understanding them is critical to building a viable process 
for packaging applications. 

0 The following classifications are useful for building and customizing packages that come as Windows 
Installer packages or can be repackaged as Windows Installer packages. As discussed in Chapter 3, 
there are many setup programs that should not be repackaged at all—these packages must use their 
built-in silent setup switches and might need to be wrapped in a generic MSI package for specific 
deployment scenarios. 

There are several classifications that should be considered when building a packaging approach: 

• Vendor-provided software applications—Software packages provided by a commercial 
software vendor. These should not be directly edited but customized using transforms. 
Additionally, no structural changes (feature organization, component codes, and so on) 
should be made to the package using a transform. 

• Repackaged software applications—Packages that the administrator community has 
repackaged from setup executables. Because the underlying software application in this 
classification is not owned or influenced by the packager, some of the rules pertaining to 
package structure are more difficult to manage. 



Chapter 4 

 
102

0 A Windows Installer package received from a software vendor should not be repackaged. I will 
discuss this scenario in more detail later in this chapter. 

• In-house software applications managed with low-end packaging/deployment 
requirements—These packages contain in-house application software but have no 
specific deployment logistics that are addressed by packaging technology. Many times 
developers for this classification already depend on the administration team for 
packaging and deployment. Generally, it is not a good idea to have the application 
development teams in this classification learn Windows Installer technology. It is likely 
that more time will be spent on quality assurance of the packages generated by the 
application development team than would have been spent simply doing the package for 
them. If possible, this classification should be consolidated into the repackaged software 
applications classification by treating it as a repackaged setup.exe. 

• In-house software applications managed with high-end packaging/deployment 
requirements—This classification is relevant when the application development team has 
special deployment challenges or logistics that are addressed by Windows Installer 
packaging functionality. An example is a development team that deploys to a sales field 
force that would like to take advantage of Windows Installer patching technology. This 
classification can be tricky to manage because it brings up the question of whether the 
development or administration team should be responsible for building the package and 
managing its structure over time. You might be able to consolidate this classification of 
packages with the vendor-provided software applications class. Doing so would result in 
the application development team completely managing the Windows Installer packaging 
with administrators customizing and deploying the package. 

0 It is my opinion that an in-house development team that has high-end packaging requirements should 
be willing to build and manage the package structure and all upgrades within their team. If the 
packaging work is attempted by the administration team, it will pull shared administrator resources 
away from all corporate packaging. 

Formulating processes for the in-house classifications is the most difficult proposition. The 
scheme that I present attempts to keep administrators out of the business of building packages 
such as those that commercial software developers would build. Doing so prevents 
administrators from having to learn a deep level of Windows Installer methodology for fairly few 
packages. 



Chapter 4 

 
103

Package Structure Rules for Administrators 
As mentioned earlier, there are some strict configuration rules for how the application 
management meta data in a Windows Installer package must be structured. I will be referring to 
these rules as package structure rules. They pertain to the content and identity (GUIDs) of 
components, packages, and products within Windows Installer packages. These rules help allow 
Windows Installer to solve some age-old packaging challenges. Remember, as with all of the 
SDK documentation, the perspective of these rules is that of coordinating between all 
commercial software developers with global distribution: 

• To help with DLL hell by ensuring the unique and consistent identification of all 
executable files (EXEs, DLLs, OCXs) published by all software vendors in the world. 

• To allow for efficient and error-free software upgrades. 

• To help prevent software uninstallation problems. 

Essentially, there are two main areas in which package structure management is required. It is 
required between your packages and all other packages, and it is required between your packages 
and any subsequent upgrade packages for your packages. These rules are focused on solving 
certain software problems for commercial software developers, releasing new products for 
possible global distribution. 

	 I recommend that you read the four main SDK documents that deal with component rules: 
“Organizing Applications Into Components,” “Defining Installer Components,” “Changing the 
Component Code,” and “What Happens if the Component Rules are Broken?”  

Component Rules—The Protocols for Sharing 
The essence of understanding component rules is understanding the problems that the idea of 
components is trying to solve. Many application integration problems occur due to the sharing of 
code and other application resources by applications. Here are some classic sharing problems: 

• Two applications on the same computer require different versions of the same DLL file 
stored in the same location on the hard drive. 

• Two versions of the same DLL stored in different locations on the hard drive attempt to 
keep their data in the same file or registry key. 

• Installation programs that do not follow version replacement rules unwittingly downgrade 
a shared DLL. 

• The uninstall of an application breaks another application that was using files shared by 
both applications. 

• The uninstall of an application leaves shared files intact but removes resources required 
by the shared files. 

• Commercial application developers in one company use software application code from 
another company but fail to properly distribute, upgrade, or configure it on target 
systems. 



Chapter 4 

 
104

Microsoft set out to solve these sharing problems with Windows Installer. From Microsoft’s 
perspective, any solution to this problem must be able to work for every application and every 
desktop computer in the world. With millions of computers and millions of applications, there is 
no way to put any boundaries around the problem—the solution must be able to cover the 
innumerable combinations derived by all possible combinations of millions of applications 
installed on millions of computers. 

Scope of Distribution 
Using GUIDs components can uniquely identify every piece of Windows code (EXE, DLL, and 
OCX files) in existence and group each piece of code with all of its required resources. This 
fundamental idea allows Windows Installer to coordinate code sharing during installations, 
upgrades, and uninstalls. If developers follow the component rules, incompatible versions of the 
same code will not be placed in the same location on disk. 

� Windows Installer made its grand entrance with Win2K. The Win2K application guidelines 
encouraged developers to place all of their DLLs in the application’s Program Files directory rather 
than shared locations such as System32. So in the ideal world, most components would have been 
managing software code that was no longer stored in shared locations on disk. However, in the real 
world repackaging and software development habits have ensured that there is a large body of 
software code in shared disk locations that is managed by components. 

The SDK’s assumed scope of distribution is “any software application in the world installed on 
any computer in the world.” However, as we talked about earlier, administrators in a managed 
environment have a more defined scope of distribution. With repackaged applications, it is 
necessary to think of these rules with the scope of distribution “any repackaged software 
application in the company, installed on any computer in the company.” 

0 If you work for a division of a large company or conglomerate, you might be tempted to refine the 
scope of distribution further to read “any repackaged software application in my division, installed on 
any computer in my division.” If this is done, you must be 100 percent certain that no application you 
generate will ever be installed in another division, including unforeseen division mergers, employees 
division reassignments (with computer), and corporate restructuring. Unfortunately, Windows Installer 
will be very unforgiving about overlapping and uncoordinated component definitions regardless of 
business driven changes in the scope of distribution. 

By refocusing the scope of distribution on the boundaries of a company, we can make better 
sense of the component rules we will be discussing. This customized scope of distribution 
applies to any repackaged applications because these are the applications for which 
administrators assign the identifying codes. Windows Installer packages from software vendors 
come with their identifying codes assigned by the vendor—these should not be changed and are 
assumed to be unique worldwide. 



Chapter 4 

 
105

Code Management Components 
Although components are used to solve many sharing problems, their highest calling is to 
prevent code sharing problems. The remainder of this discussion will focus on components that 
solve code sharing problems. As with most Microsoft OS-level technologies, Windows Installer 
intends to solve this problem going forward—as new applications are built on the new 
architecture. Repackaging is presented with new challenges because multiple component codes 
(GUIDs) can be generated for the same code or incompatible application code can have the same 
component code. 

In Chapter 3, we learned that each .EXE, .DLL, and .OCX file has its own dedicated component. 
Although components are identified by their GUIDs, they also inherit some of their identity from 
the keypath file. The component’s “location” is determined by the full path name (path + file 
name) of the keypath file. The component’s “version” is determined by the version of the 
keypath file. 

Components can contain many resources such as files and registry keys, but these resources must 
remain in the same location and be backward compatible when the component is upgraded. 
Component resources cannot be added, removed, or change locations. When upgrading the 
software code contained in a component, the code must be fully backward compatible with all 
previous versions, and the keypath file must keep the same name and location; if any of these 
assumption are not true, a new component (and new component code) must be defined. Here are 
the high-level rules to keep in mind: 

• Components are created and assigned a component code when a code file has the same 
name, location, resources, and compatibility as all other existing copies of that 
component in any software application in the world installed on any computer in the 
world. 

• Component instances (copies installed on many machines) that are identical as per the 
earlier described rules MUST NOT have more than one component code identifying them 
(in any software application in the world installed on any computer in the world). 

Figure 4.8 illustrates what happens when a component is upgraded with compatible software 
code. 



Chapter 4 

 

Figure 4.8: Compatible software code change upgrades component. 

Figure 4.9 shows what must happen when an incompatible software code change is made. 
Instead of changing the old component, a brand new component is created. This mechanism is 
powerful because the new application can be coded to look for the new software code using the 
new component definition while all existing applications in the world on all desktops in the 
world that share the older software code (whether known or unknown to the software developer) 
will remain working because both of these pieces of incompatible code (and components) can be 
on the same system. 

0 Component rules do not have an answer for two sets of existing software code that are incompatible 
(for example repackaged DLLs) that must be installed to the same shared disk location because they 
assume that the code in the last component defined can be renamed or moved by the package 
developer. 

 
106



Chapter 4 

 

Figure 4.9: Incompatible software code change spawns new component. 

Duplicate Component Definitions 
In Chapter 3, we touched on the fact that Windows Installer reference counts components based 
on their component IDs. A reference count simply tracks how many applications are using a 
specific component. If five applications all install a specific component, the component would 
have a reference count of five. If one of those applications was subsequently uninstalled, the 
component would not be removed; instead its reference count would be decreased to four and it 
would be left on the system. 

0 In the past, some IT organizations have prevented uninstall problems by making a rule that managed 
packages will never be uninstalled. For legacy setup technologies, this rule is sensible. Windows 
Installer upgrades, however, perform component level uninstalls during upgrade operations. Thus, 
upgrades of the same application will indeed remove files and system resources rather than layer on 
top of them like legacy repackaging and setup programs. 

Repackaging tools assign new GUIDs to the entire package structure each time the repackaging 
tool is run. You can observe this behavior by repackaging the same application three times, then 
viewing the component code for the same file in each package. This behavior can lead to 
multiple component codes for the same file when multiple corporate repackaging labs package 
the same software or even if the same package developer repackages a software application from 
scratch multiple times and sends both versions into production. 

 
107



Chapter 4 

Duplicate component definitions occur when two functionally identical instances of a component 
have different component codes. Figure 4.10 illustrates how duplicate component definitions can 
result in sharing problems. If Package 1 in Figure 4.10 were to be uninstalled, the file abc.dll 
may be removed, which would break the software applications in Package 2 and Package 3. 
Windows Installer performs some additional checks when determining whether to remove a 
component; however, if the component has a duplicate definition, there is a much higher risk that 
it could be removed when it is still needed. 

 

Figure 4.10: Duplicate component definitions. 

0 A frequent misconception about accidentally uninstalled components is that they are simply self-
healed by Windows Installer when another dependent application is started up. As we covered in 
Chapter 3, self-healing is dependent on feature structure, so it is possible to have missing files that 
will not self-heal when components are unintentionally removed. 

Conflicting Component Definitions 
Another related problem occurs when the same component definition refers to two sets of 
resources that conflict when installed at the same time. Figure 4.11 shows the same component 
defined with two different DLLs. In this case, abc.dll version 8.5.2 is not fully backward 
compatible with version 7.1.0 and it breaks the software application in Package 1. If the DLL 
were compatible, this illustration would actually be the correct configuration for this component. 

 
108



Chapter 4 

 

Figure 4.11: Conflicting component definitions. 

If you were the developer of abc.dll, you would create a new component for the functionality 
contained in abc.dll as well as rename and/or move abc.dll for the newer version of the software 
that requires it. When you are repackaging software, you do not have this luxury and must resort 
to extensive application integration testing. After you complete the testing and find a compatible 
version of the DLL, it must be set up as the standardized component in all packages. 

Windows Installer does follow DLL replacement rules in part because components inherit their 
version number from the DLL. A DLL file is never downgraded during a default package 
installation. Special parameters and values authored into a package can cause packages to force 
their version of a DLL onto the system; however, in practice, this configuration is not frequently 
used. 

Self-healing can unintentionally “downgrade” a component when the keypath file is missing. 
This occurs because self-healing files are sourced from the first package that triggers a self-
healing event. For instance, if abc.dll in Figure 4.11 was deleted and Package 1 triggered self-
healing, when the user started up the software application, version 7.1.0 of the file would be 
copied into the system32 directory. When the software applications in Package 2 or Package 3 
were started, self-healing would see that the file existed and no self-healing would occur, leaving 
abc.dll at version 7.1.0, which would break the software applications in Packages 2 and 3. 

0 If Windows Installer packages from software vendors are repackaged, they will have many problems 
with duplicate component definitions because the repackaging tool will re-assign all component 
codes. 

 
109



Chapter 4 

 
110

Compounded Problems 
Duplicate and conflicting component definitions create some big problems, even in a simple 
illustration using three applications installed on one computer—consider this problem multiplied 
by hundreds of applications with hundreds of thousands of DLLs. If a popular runtime support 
DLL is used by many applications, it might have multiple duplicate component definitions and 
multiple conflicting component definitions across the many packages that utilize it. 

In the face of this level of complexity, conflict management tools take on a new level of 
importance. Conflict management tools, which will be discussed later in this chapter, allow 
administrators to manage component definitions across all packages in your scope of 
distribution. 

Upgrade Packages 
We have been examining how package structure management is important for application 
sharing—that is coordinating between your package and all other packages. Package structure 
management is also critical for building upgrade packages—that is coordinating structure 
between your package and any of the upgrade packages that are eventually built for it. Because 
patch packages are a special kind of upgrade package, we will discuss them after upgrades. 

From a Windows Installer perspective, upgrade packages are fully functional packages that can 
install software applications on a clean machine. Package developers might require previous 
versions before installations can proceed, but this requirement is simply a licensing control—the 
package itself contains all the information necessary to install the package on a clean 
workstation. An upgrade package includes additional information that helps it identify upgrade 
candidate packages on the target workstation. Its internal structure is also designed by the 
package developer to coordinate with previous versions of the package. 

Windows Installer is intimately involved with performing upgrades, enforcing specific rules at 
the component level during an upgrade. If the package structure is not managed appropriately, 
Windows Installer might do unexpected things with your package. Even if you only ever had 
three Windows Installer packages to build for your environment and were able to successfully 
ignore package structure rules without any problems, you would still need to adhere to them if 
you intend to upgrade your own packages. 

Upgrade Processes 
Before we can discuss the SDK upgrade rules and how they apply to administrators, we must 
understand how Windows Installer prefers to perform upgrades. A standard Windows Installer 
package will perform upgrades steps as follows: 

1. Identify upgrade candidates (installed packages that can be upgraded by the currently 
installing package). 

2. Install new and updated components. 

3. Remove unneeded components. 



Chapter 4 

 
111

The last two steps in this sequence might seem backward. This sequence is meant to address the 
issue of ever-growing software applications. Take Microsoft Office for instance. Say that a given 
configuration of Microsoft Office takes 950MB on disk. Further, imagine that an update to 
Microsoft Office requires 10MB of new and updated files and the deletion of 4MB of files. If a 
full de-install and reinstall is performed, then 950MB of files are deleted and 960MB of files are 
copied. Windows Installer’s method of installing new and updated components and then deleting 
unneeded components reduces this load to 10MB of file copies and 4MB of deletions. 

From an administrator’s perspective the significance of these file transfer savings depend on 
whether software is deployed while users wait. In many organizations, software is deployed 
during off hours, so the length of time waiting is not as significant to the end user experience. In 
addition, it depends on the average size of software packages. If most software is smaller than 
10MB, the difference between the two approaches may be negligible even for interactive 
installations. You can configure Windows Installer to perform the uninstall of the package to be 
upgraded before installing the new package. 

	 For more information about configuring Windows Installer to uninstall first, see “Sequence 
Restrictions” in the SDK document “RemoveExistingProducts Action.” 

Package Attributes 
There are three key attributes of a Windows Installer package that are used to designate what 
type of update a package is. These attributes are: 

• Package code—The package code is a GUID that is stored in the summary information 
stream. A package code indicates that two Windows Installer packages will perform 
identically when executed. Only functionally identical packages should share the same 
package code. 

� Package codes function similarly to hash codes, which ensure that two file versions match exactly 
(like CRCs). Windows Installer cannot use hashes to determine identical functionality because MSI 
files contain a database that might vary in physical organization between two identical copies of a file 
and Windows Installer packages can be functionally identical but structured differently. For instance, 
an MSI file with compressed source files and an administrative install share from that package have 
very different physical file structures but perform identically when installed. 

• Product code—Product code is a GUID stored in the property table. Just like a 
component code is the authoritative identification of a component a product code is the 
authoritative identification of a software product. Two packages should only have the 
same package code if they are the same major release of the software package. Two 
instances of the same identical packages should always have the same product code. 
Sloppy or uncoordinated repackaging processes can cause identical repackaged 
applications to have multiple package codes deployed to production computers. This can 
result in upgrade packages not recognizing upgrade candidate packages installed on 
computers to which they are deployed. 



Chapter 4 

 
112

• Product version—Product version is a period delimited numeric value stored in a 
property that usually coincides with the version number of the software application. The 
format is w.x.y.z where w is major version, x is minor version, y is the build number, and 
z is a further revision number. If product versions are not properly managed, upgrade 
packages might fail to apply to upgrade candidate packages on computers to which they 
are deployed. 

0 Although Windows Installer allows four positions of the version number to be defined, it only pays 
attention to the first three when comparing version numbers. 

Update Types 
The Windows Installer SDK defines three types of update packages. These types have very 
specific meanings within Windows Installer. Although these update types are more specific than 
the generic update categories that have evolved as best practice in software development, the 
user expectations of what might change in a given update type are similar. 

Minor Upgrade 
Minor upgrades allow additions to existing software as long as the addition is in the form of new 
components. Features can be added or removed, but the features cannot be reorganized. The MSI 
file name must remain the same as well. 

Minor upgrades must increment the product version to a higher version. The product code is 
unchanged. Because the upgrade package is not functionally identical to the package it upgrades, 
the package code must be regenerated. 

This update type roughly equates to a minor release of a software package that might fix some 
bugs and add a few improvements and a minor feature or two. Strictly speaking package 
developers could make some pretty large-scale changes to their packages and still fit within the 
SDK rules for a minor upgrade. 

Small Update (Admins Need Not Apply) 
A small update is identical to a minor upgrade in regard to the rules about what can be changed 
within the package. The only difference is that the product version is not incremented. 

When the product version is not changed, it is impossible to tell which installations of the 
original package have had a given small update or multiple small updates applied to them. The 
Windows Installer meta data (product version and product code) for the packages looks identical. 
Presumably, this update category is meant to facilitate policies in application development 
organizations that require extensive authorizations or regression testing when version numbers 
are changed. This can be overburden when a single file needs to be changed or the initial 
package has been distributed to an extremely limited number of computers. Because a small 
update package is not functionally identical to packages it upgrades, the package code must 
change. 

0 I advise strongly against administrators using small updates or allowing in-house developers to use 
small updates. The inability to distinguish two installations of application software that are distinctly 
different does not follow generally accepted practices for managed computing systems. 



Chapter 4 

 
113

A small update roughly equates to a hotfix to an existing application with which very few 
changes are made to an existing application. However, even when following Windows Installer 
SDK rules, much more could be changed. 

Major Upgrade 
There are no limits as to what can change with a major upgrade. The package could for all 
intents and purposes be a complete rewrite that does not use a single file or registry key from the 
previous version. In most cases, however, a major upgrade will share package structure elements 
with the previous versions it upgrades, but specific types of changes require the package to be 
classed as a major upgrade. 

	 For complete details about what can change during minor and major upgrades, see the SDK 
document “Changing the Product Code.” 

A major upgrade is equivalent to a software application release that changes the highest version 
number (for instance, ABC version 2.5 to ABC version 3.0). However, Windows Installer 
package structure changes required to deploy small scale changes to the software application 
might trigger SDK rules that force the package to be classed as a major upgrade. 

Simplifying Upgrades 
Upgrades can be simplified by using the package classifications we established earlier. Here are 
some general approaches that you can use as a launch point to establishing your upgrade 
practices: 

• Vendor-provided software applications—Because the vendor is the one building the 
packages, you simply deploy whatever types of updates the vendor delivers to you. 

• Repackaged software applications—In general, an upgrade package for a repackaged 
application should be assumed to be a major upgrade. Vendors who deliver setup.exe 
applications are not bound to any of the Windows Installer package structure rules and 
therefore can make software changes that automatically trigger the major upgrade 
classification. Rather than spend many hours sorting through a package to determine 
whether it is a major upgrade, streamline the process by treating all updates as major 
upgrades. You might want to test whether moving the RemoveExistingProducts standard 
action to cause a complete de-install before package install gives higher quality upgrades 
for your upgrade packages that are built for repackaged applications. 

	 For more information about configuring Windows Installer to uninstall first, see “Sequence 
Restrictions” in the SDK document “RemoveExistingProducts Action.” 

• In-house software applications managed with low-end packaging/deployment 
requirements—Generally, these packages should be managed as repackaged applications, 
which would put them in the major upgrade category. However, in the case of in-house 
applications, you can generally learn from developers whether the changes between two 
releases are significant and make a judgment between a major and minor upgrade. The 
caution here is that this creates a new fork in your process and involves more 
coordination and potentially more familiarity with package structure than would 
otherwise be needed by an administrative packaging team. 



Chapter 4 

 
114

• In-house software applications managed with high-end packaging/deployment 
requirements—This classification should generally be managed like the vendor-provided 
software applications, which means that you would deploy whatever is given to you by 
the in-house development team. However, it is wise to always discourage the building of 
small updates by another in your company. You might be unfortunate enough to be an in 
an administrative community that has no choice but to manage this type of packaging for 
an in-house development team. If this is the case, ensure that you build up an expert on 
package structure from a developer’s perspective. Also ensure that a team member is 
intimately familiar with the in-house software application’s structure and that the team 
member can exert influence on this structure to ensure that packaging rules can be 
followed as intended. You might want to test whether moving the 
RemoveExistingProducts standard action to cause a complete de-install before package 
install gives higher quality upgrades for packages in this classification. 

Patch Packages 
Windows Installer patch packages provide efficiency during deployment by allowing a much 
smaller package to update existing software. Patches require that an existing version of the 
software application be present because (unlike upgrade packages) they do not include a fully 
functional version of the package or software application. Patch packages achieve smaller file 
sizes through two methods: 

• Only files that have changed are evaluated for inclusion in the patch. 

• Only the actual binary changes between the old file and new file are included in the 
patch. 

Special differencing technology is used to generate binary pieces of the files to be patched and to 
use the pieces to alter older versions of the file during patch application. Patching has the ability 
to patch multiple previous versions of the target files. For instance, a patch may be able to update 
versions 1.01, 1.37, and 1.42 to version 1.50. 

Generating Patches 
To generate a patch, a full upgrade package must be built. The Windows Installer patching 
routines (shipped in the SDK and included in many authoring tools) are run to generate the 
patches. 



Chapter 4 

 
115

Patching Reality Checks 
Many administrators become enamored with the potential benefits of patching. Here are some 
points that should be kept in mind when considering the use of patching in your practices: 

• Patching is not faster than generating a full package—Administrators might have 
experienced the concept of patching as building small scripts to fix up application 
deployment problems. Generating these scripts may have been much quicker than 
building a new package because they adverted some change and quality control processes 
and were much quicker to build than a full package. Because Windows Installer requires 
a complete update package to generate a patch, it is actually extra work, processes, and 
quality testing to build a patch package. It might be more efficient to use the upgrade 
package that must be generated to deploy the upgrade. 

• Patching primarily helps with bandwidth management—Patches are smaller and can 
provide bandwidth relief in two specific scenarios. Constrained bandwidth between 
servers can benefit from patching packages on administrative install shares. This allows 
patch packages to be distributed and applied to servers rather than sending an entire 
upgrade package. The decision to use administrative install shares has other 
considerations, such as higher disk space usage, that must be factored into the decision 
about whether to use them. 

Constrained bandwidth to client computers can benefit from patching packages on 
workstations or deploying to client computers using administrative shares that are 
patched. Either method reduces the amount of data transfer for updates. 

• Patch packages are more difficult to manage—Because patch packages use a different file 
structure, they cannot be opened and examined as easily. In addition, the application of 
patch packages uses very different processes and generates different log entries and 
troubleshooting scenarios. 

• Patch packages might require original source package—Previous to Windows Installer 
2.0, patch packages required the original file source to extract files and patch them rather 
than patching files directly on the target system’s disk. 

These cautions do not mean that patching is inappropriate for administrators. Upgrade packages 
should generally be the first approach for updating software applications with the costs of 
patching being weighed with the additional benefits that it can provide in specific deployment 
scenarios. 



Chapter 4 

 
116

Conflict Management for Package Structure 
There are many aspects of package structure that must be managed and kept straight to ensure 
high quality software distribution over the long term. Package structure management is further 
complicated by the fact that Windows Installer was not intended for use in repackaging. There 
are many conflicts that can occur in package, product, and component contents and 
identification. These challenges combine with the tighter service level that requires that software 
packaged by administrators not cause problems with any other installed software. 

Windows Installer tool vendors have recognized administrators’ need to gain tighter control and 
have responded by creating conflict management tools within their administrative tool suites. 
Essentially, these tools import every package in the scope of integration (usually your company) 
and analyze them for potential problems such as duplicate and conflicting component definitions 
and duplicate and conflicting package and product codes. 

You can also use conflict tools to find problems with Windows Installer packages received from 
software vendors. Software vendors can create packages that inadvertently duplicate package 
structure elements in other vendor packages. In addition, conflict tools will reveal if your 
packages contain component definitions that are also in vendor packages. In these cases, the 
vendor packages should be given preference whenever possible. 

Conflict tools generally have some capacity to resolve conflicts. For example, Wise’s conflict 
management tool allows package developers to specify which version of a DLL to use for a 
given component and what component code should be assigned. The conflict manager can then 
re-write this component definition in all affected packages and re-compile all affected packages. 
The re-compiled packages are configured as upgrade packages so that they can be used to fix 
previously deployed versions that have incorrect GUIDs. 

A Word About Merge Modules 
Merge modules are a mechanism in Windows Installer that allows software companies to 
prepackage and share standard component definitions. For example, take the infamous Crystal 
Reports runtimes. The files, DLLs, and registry entries that make up these runtimes can be 
defined as Windows Installer components and placed in a merge module.  

When any developer in the world wants to distribute these runtimes, they use the vendor merge 
module to ensure that a complete set of runtimes files is included with the vendor assigned 
versions, component codes, registry keys, and other Windows Installer elements that the owning 
software vendor assigned. Obviously one of the biggest publisher’s of merge modules is 
Microsoft. When not merged into a package, merge modules are contained in .MSM files 
(another variant on the .MSI format). 



Chapter 4 

 
117

Merge Modules in the Administrator’s World 
There are several scenarios in which administrators might find merge modules useful or 
necessary. The following list provides some examples: 

• To use vendor-built merge modules instead of the files repackaged with a setup.exe. 
Software vendors may build a setup.exe installation package that includes third-party 
runtime files that are also provided by the third-party as merge modules (for use by 
software vendors who are building Windows Installer packages). Using the merge 
module instead of building your own components ensures that reference counts of 
vendor-provided components are accurate when vendor-provided MSIs and repackaged 
MSIs both use the same versions of third-party runtimes. 

• To alert in-house developers that they should be using vendor-provided merge modules if 
they are authoring packages that include runtimes that are distributed as merge modules 
by the runtime vendor. 

• To engineer merge modules for in-house packaged software. As I mentioned earlier, if an 
application development team in your company wants to build merge modules, they 
should probably be doing their own Windows Installer packaging—so hopefully you will 
not need to be involved in this scenario. 

• To engineer merge modules for repackaged software. 

0 Although engineering merge modules for repackaged software is a topic of much debate, it is my 
opinion that if a company is considering engineering their own merge modules for repackaged 
software, they may be better served with a full conflict management tool. 

Merge Modules as a Poor Man’s Conflict Management Tool 
Many administrators have wondered whether merge modules might be leveraged to help with 
coordinating a managed set of DLLs among repackaged software applications I am not in favor 
of using merge modules as a form of homemade conflict management because 

• Merge modules are difficult to distribute in a timely fashion to maintain a synchronized 
version among all package developers. 

• Additional Windows Installer expertise is required to engineer merge modules. 

• Merge module–based schemes focus on developer component coordination requirements 
and might not catch other possible problems and conflicts with package structure. 

By contrast, conflict management tools are designed for application integration needs. The 
benefits of conflict management tools include the ability to test packages before excessive 
integration changes are introduced, track DLL versions which allows reverting to the shipped 
version, and report on and re-release all affected packages when managed DLLs are upgraded. 

Merge modules may be used effectively in environments that can be tightly controlled or that are 
simple (single site or few package developers), but the cost of additional engineering, expertise, 
and risk should be weighed against the cost of formal conflict management tools. 



Chapter 4 

 
118

Replacing Repackaged Files with Merge Modules 
Many administrators might want to replace repackaged runtimes with the vendor’s official merge 
modules or internally generated merge modules during the packaging process. You should be 
familiar with the following cautions when replacing repackaged files with merge modules: 

• As of Windows Installer 2.0, merge modules can alter package logic (such as adding 
custom actions), which might result in unintentional package behavior. 

• Merge modules may contain errors. 

• Merge modules may add many more files than your setup.exe package originally 
contained due to dependency information that was not tracked by the developer who built 
the setup.exe program. 

• Merge modules may have different versions of supporting files; although they should be 
the vendor’s specified matching versions, in some instances they may create 
compatibility difficulties with the software application if the original setup.exe contained 
mismatched file sets on which the application vendor built their software. 

• Merge modules will need to be run through your conflict management tools if you are 
using them. 

• Be sure you are familiar with the rules followed by automatic merge module 
scanning/replacing tools and ensure that they meet your guidelines for application 
integration and testing. 

• Application testing can be made difficult when large portions of an application are 
replaced by merge modules. If merge modules replace 50 DLLs and there is a problem 
with integration testing, it can be very difficult to know where to start diagnosing the 
problem; you might want to keep a reference copy of the MSI as cleanly repackaged 
before merge modules are substituted. 

Administrator and In-House Developer Generated Merge Modules 
If used, administrator or in-house developer–generated merge modules should follow a set of 
simplified design rules. Since version 2.0 of Windows Installer, many packaging items (such as 
actions) can be included in a merge module. For the sake of management simplicity, you might 
want to start with the following merge module guidelines and adapt them as your requirements 
dictate: 

• Read up on merge modules before making design decisions in your company. 

• Do not use the configurable merge module features. 

• Do not include package processing elements such as custom actions or dialog boxes. 

• Only use dependency information if it is applicable to all possible uses of the merge 
module. 

• Always check to determine whether files are already contained in a vendor-provided 
merge module. 



Chapter 4 

 
119

• Only include a single code component within a merge module. If a merge module must 
contain multiple components, make absolutely sure that you are not guessing as to which 
code file components to include and which versions match each other. 

• Only include the registry entries required for COM registration of code files or other 
registry entries required for operation of the code. 

In any organization, the approach to merge modules should be discussed and defined during the 
definition of packaging standards. The usage of merge modules can prove to be very difficult to 
engineer as an afterthought to the design of packaging in your company. 

Summary 
In this chapter, we have covered a lot of ground in regard to best practices and process 
formulation. Windows Installer packaging and processes are extremely flexible to be able to 
accommodate global coordination between all Windows software. The flexibility as well as the 
underlying assumptions for this new paradigm are not suited to simplistic best practices and 
processes. Hopefully, the principles and practical recommendations in this chapter will provide a 
good launching pad for your efforts to build packaging practices and processes at your company. 

Chapter 5 will focus on the infrastructure required to successfully deploy and maintain packages. 
This upcoming chapter will discuss how to build this infrastructure if you don’t have Active 
Directory (AD) as well as provide pointers for those of you who do have AD.



Chapter 5 

 
120

Chapter 5: Windows Installer with or without Active Directory 

by Darwin Sanoy 
 

Although Windows Installer saw the light of day as the technology that installed Office 2000, its 
grand entrance was with the release of Win2K. Many new management technologies were also 
released in Win2K. To the casual observer, it might appear that the management technologies in 
Win2K are only available if a company is willing to deploy Win2K to all of their servers and 
desktops and to use AD for authentication and directory services. In fact, Windows Installer can 
actually be used very effectively in the absence of Win2K servers, AD, and even Win2K or later 
desktops. This chapter will examine several topics with two major themes in mind: 

1. If a company does not have AD, what plans must be made to ensure that Windows 
Installer has the necessary supporting technologies to be effective. This perspective is 
important for companies who will never have AD as their primary directory service and 
companies who will have a delay or extended AD deployment. 

2. If a company has or plans to deploy all the Win2K technologies (server, directory, 
desktop), there are still some significant challenges to building software distribution by 
Microsoft’s IntelliMirror playbook. This perspective will point out these areas and 
highlight alternative approaches. 

Beware the Tide of Windows Installer 
Packaging is an expensive and time-consuming activity that software vendors are not willing to 
do twice. As software vendors change to Windows Installer packages for their latest software 
releases, vendors will cease to provide setup.exe packages. Many vendors are delaying the 
switch to Windows Installer until Windows Installer has a much greater install base. However, 
once the tide turns, it might catch many organizations off guard. 

This chapter is somewhat presumptive that your company is taking a planned approach to the 
introduction of Windows Installer technologies in your environment. However, even if you do 
not have the luxury of deploying Windows Installer as part of a formal IT project, it will be 
important to manage the items highlighted in this chapter to ensure that Windows Installer does 
not create more problems than it solves for your company. You can do so by gradually phasing 
in some of the new support technologies with the first Windows Installer packages that need to 
be deployed. 



Chapter 5 

Services Provided by Win2K Technologies 
Management technologies deployed in Win2K provide some key services to the IntelliMirror 
desktop management model. Most notably are technologies that support the package distribution 
repository by allowing it to be universally accessible, locally sourced, load balanced, and fault 
tolerant. These technologies also help to replicate the files to multiple locations throughout the 
network. The primary technologies at work here are Distributed File System (DFS) and File 
Replication Service (FRS). 

� In Chapter 4, we talked about the fact that Windows Installer relies on Group Policy for managing 
application settings that must be changed after package deployment. This chapter does not discuss 
replacements for this functionality in detail. Any third-party policy management system can replicate 
the basic registry tweaking abilities that are used in Group Policy for managing application settings. 

Win2K technologies also allow packages to be installed on client workstations. The primary 
technology here is Group Policy Objects (GPOs), which require Win2K Server, AD, and Win2K 
or later desktops, as Figure 5.1 illustrates. 

Distribution Technologies 
(package mass installation 

and status reporting) 

Repository Technologies 
(replication, storage and 
availability of packages) 

Client Technologies 
(Windows Installer) 

 

Figure 5.1: Win2K technologies needed for Windows Installer package distribution. 

 
121



Chapter 5 

 
122

IntelliMirror Repository Technologies Overview 
The out-of-box IntelliMirror desktop management solution uses DFS for repository services in 
large-scale enterprise implementations. DFS allows Windows Installer packages to be sourced 
from a single domain-level share name. Because DFS operates at the file-system level, its 
services are transparent to the client applications that use them. When designed and configured 
properly, DFS provides the following benefits (see Figure 5.2 for an illustration of these 
concepts): 

• Local sourcing—Requests for files are automatically taken from a server that is in the 
same local site as the computer requesting the files. Figure 5.2 does not indicate the 
location of the client computer; however, DFS would favor a server in the same site as 
the client when finding a source location for the files. 

• Universal availability (file location abstraction)—Requests for files are made to a share 
name that appears to be attached to the domain rather than a specific computer. Win2K 
DFS then determines from which server to actually retrieve the files. Figure 5.2 shows 
that the share name \\domain\share (where domain is any AD domain and share is a DFS 
share name) can be requested, and DFS finds a server location for this reference. This 
type of approach is also known as abstracted because the client computer is requesting a 
logical location and DFS finds a real location. 

• Fault tolerance—If a request for a file encounters a server that is not operating, a new 
server is tried until a working server is found. The requesting application does not need to 
be aware of the multiple locations where these files reside. If any of the servers in Figure 
5.2 were not available, DFS would find a different server for the client to use. 

• Load balancing—Requests for files are automatically balanced between identical 
directory trees on multiple servers, which provide those files to the network. In Figure 
5.2, this functionality would manifest itself by dynamically allocating half of the client 
requests at Site 1 to one of the servers and the other half to the other server. 

Although these benefits are all desirable, the two that organizations of all sizes will be affected 
by are local sourcing and universal availability. Local sourcing ensures that packages are not 
pulled across WAN links, which is critical for the user experience due to potential impact to 
shared WAN bandwidth. 

Universal availability lets Windows Installer packages be installed on computers with little or no 
concern for where the computer might be moved—either permanent moves during system 
provisioning or temporary moves constantly made by mobile computers. Universal availability is 
related to local sourcing for mobile computers whose “local site” changes depending on where 
they are located. 

FRS provides replication services for DFS. FRS is the technology that replicates AD objects. 
FRS is a simple replication system for synchronizing the contents of DFS shares. It automatically 
configures a replication topology, tracks when files change, and automatically copies updates to 
all replicated copies. As Figure 5.2 shows, each server that participates in replicating a set of 
files will map to the other servers and push files to them as changes occur. 



Chapter 5 

 
123

� FRS is also used to replication logon scripts, GPOs, and directory changes; however, FRS acts very 
differently when performing these replication activities than when it replicates DFS shares. I will 
discuss this behavior in more detail later in this chapter. 

Replication  
FRS keeps package files 

synchronized  

Abstraction 
DFS dynamically locates 
local, load-balanced, and 

available file sources 

 

Figure 5.2: IntelliMirror repository technologies. 

IntelliMirror Deployment Technologies Overview 
GPOs are the main technology that allows Windows Installer packages to be distributed directly 
to clients without the use of an Electronic Software Distribution (ESD) system. As Figure 5.3 
shows, Group Policy uses a client agent that reads AD objects to determine whether software 
packages need to be installed. This same agent reads the package installation information from 
the directory and triggers the actual installation of the Windows Installer package on the client. 
One of the biggest limiting factors in utilizing this technology is that clients must be running 
Win2K or later and AD must be used for directory services. However, even if AD is available, 
there are other limitations of Group Policy deployment that should be considered—we will 
discuss these limitations later in this chapter. 

\\domain\share 

Site 1 

D
FS

Site 2 

Site 3 



Chapter 5 

Deployment  
Software distribution 
agent, AD, and GPO AD 

Domain 

Package Install Data 
(Logon or Reboot) 

Package Source 
from GPO 

Configuration 

Win2K or Later Client
(Software Distribution Agent) 

 

Figure 5.3: IntelliMirror deployment technologies. 

Source Lists—the Good and the Bad 
In the last chapter, source list management was mentioned as a necessary best practice. As 
mentioned in that chapter, each package installed on a computer keeps a list of places where the 
package source files can be found. Package source files include the package file itself (MSI), any 
needed transforms (MST), and the actual software application files. The software application 
files can be embedded in the MSI, external from the MSI in .cab files, or external from the MSI 
and uncompressed. Aside from the installation of the application itself, they are also used for 
self-healing, install-on-demand, patching, and for server-based client applications. Source 
locations are also used to re-cache missing transforms if they are unavailable in the local 
Windows Installer file cache. 

	 Microsoft has enhanced Windows Installer 2.0 so that it does not need to touch the source files as 
frequently as previous versions do. In addition, Windows Installer 2.0 supports building patches that 
do not require access to the original package source files. 

Source lists are intended to provide fault tolerance in finding source files, so they are processed 
sequentially until a valid source location is found. Source lists do not inherently provide any type 
of load balancing. A poor man’s load balancing can be accomplished by randomizing the source 
list when the package is installed. 

Source lists can be managed more loosely in a by-the-book enterprise IntelliMirror 
implementation because packages are generally installed from a DFS share. The DFS share 
handles fault tolerance as well as several valuable features. A by-the-book implementation will 
need to manage source lists if the overall approach includes any mobile machines that will be 
installing from removable media. 
 

124



Chapter 5 

 
125

0 When no efforts are made to manage the source list for a package, the source defaults to the location 
of the package file when the initial installation begins. A casual approach to installation locations was 
the norm with setup.exe technologies, and most administrators do not discover this painful Windows 
Installer behavior until they have quite a mess on their hands. 

There are three types of source lists—removable media sources for packages located on CD-
ROMs, floppy drives, and so on; network-based sources for packages located on network drives 
or UNCs; and URL-based sources for packages located on Web servers. 

0 Drive imaging is a popular method of deploying ready-made desktop system configurations. If 
Windows Installer packages are deployed on the desktop image, special care must be taken to 
ensure that the embedded Windows Installer source lists will be relevant in all the physical locations 
where the image will be used. Because decisions to use drive imaging might occur in a different part 
of your IT organization, this nuance can be lost in the shuffle of desktop engineering. 

The following list provides the basic actions that can be taken to manage the source list: 

• Manage which type of source lists are scanned first—removable media-based, network-
based, and URL-based (SearchOrder policy). 

• Add source list entries one or more at a time in a specified order (SOURCELIST public 
property or scripting API call). 

• Force the SourceDir private property value so that the recorded initial location is 
different from the actual initial location (custom action). Doing so can only be 
accomplished if the forced location is available to the client at the time of installation. 

• Use a custom action to make MSI API calls to clear the source list and add new sources. 

� WindowsInstallerTraining.com publishes a script called MSICAResetSources (MSI Custom Action 
Reset Sources) that inserts a custom action into existing MSI files that will implement the approach in 
the last bullet point. This script uses the default public property SOURCELIST to populate the source 
list—essentially overriding the normal behavior of making the install location the first source location. 
If SOURCELIST does not exist, the custom action does nothing, which ensures that your package 
defaults to the normal expected behavior. You can download this script from 
http://windowsinstallertraining.com/msiebook. 

You can combine these methods to do things such as remove the original install location and add 
managed locations or add network sources and reorder scanning so that network sources are 
preferred over media installs (such as with laptops that load software from CD-ROMs). 

Environment variables can also be used in source lists to make the lists dynamically point to site-
level repository locations. If you are using an environment variable strategy rather than a 
managed UNC or drive location, the source list must also be cleared of the initial installation 
location. The reason is that any environment variables used in the initial installation location will 
be resolved to a literal location before Windows Installer processes the package. This literal 
location then becomes the first source list location—which does not include the environment 
variable to make it dynamic. This occurrence is in contrast to a managed UNC or drive location, 
which does not require source list management because the embedded literal location is made 
dynamic through DFS or dynamic drive mapping. 

http://windowsinstallertraining.com/msiebook


Chapter 5 

 
126

� Using environment variables causes the “dynamic” nature of your source lists to be distributed by 
being embedded in every package configuration on every computer. Using a managed UNC or drive 
letter leaves the “dynamic” nature of source lists in the hands of a centrally manageable 
infrastructure. 

Trickle Services, CD-ROM Distribution, and Source Lists 
Many distribution systems, including SMS 2003 (code-named Topaz), support the ability to 
trickle a package down to a client slowly over time, then execute it from the local drive. These 
types of services generally do not attempt to manage the source list for your package, so the first 
and only source list entry will point to the locally cached copy. Locally cached copies can be 
deleted by the distribution system on some clean up interval. In some companies, mobile users 
who are always remote use a CD-ROM for software distribution. In both of these cases, it is 
important to manage the source lists for installed packages. You can use several approaches to 
manage the source lists. 

One approach is to include a couple of network-based source locations in the SOURCELIST 
property when launching the package. This approach causes the client to search for network 
locations first and then for the media it was originally installed from—if the mobile user keeps 
the media handy, they can use it. If they do not have it, they can connect to the network and 
attempt the Windows Installer operation again. 

It might also be worthwhile to set the SearchOrder policy to nm to ensure that Windows Installer 
searches network sources (n) before media sources (m). nmu is the default behavior for this 
policy when it is not configured (u being URL-based sources), but setting the policy explicitly 
helps others to know that it is a managed policy value. It should be set high in your OU hierarchy 
to prevent overriding at lower levels. 

Another approach is to clear the source list of all sources, then add only network sources. Doing 
so forces mobile users to connect to the network to gain access to package files. You might want 
to do so if you have multiple versions of packages and want to ensure that the mobile user does 
not attempt to use an old CD-ROM as the source for an installed package. You can implement 
this setup by using in-house maintenance scripts or the MSICAResetSources script mentioned 
earlier. 

� If you’ve always wanted to use trickle-type distribution, you might already have it for free! Windows 
XP and Win2K SP3 include the Background Intelligent Transfer Service (BITS) for supporting trickle 
down of Windows Update files. BITS works very well—detecting when to resume, limiting bandwidth 
usage, and so on. By using the BITSADMIN.EXE utility on the Windows XP CD-ROM, you can 
schedule your own files to deploy from a Web server (using HTTP) to a client through BITS. For more 
information about how to use BITSADMIN, visit http://desktopengineer.com/bitsadmin. 

Fixing Existing Unmanaged Sources 
Many of you might be feeling a sense of doom in regard to package installation locations 
because you have not been managing them for the past 2 years that installations have been 
occurring. You might have thousands of computers that have installed packages from many 
different locations that might no longer be valid. Or perhaps you are going through a process to 
consolidate locations or migrate servers—in all of these instances, package source lists might be 
pointing to incorrect locations. 

http://desktopengineer.com/bitsadmin


Chapter 5 

 
127

MSISources is a script written for just this purpose. It allows you to identify which packages you 
want to manage source locations for in a control file. The control file is then used by MSISources 
to find packages that should be managed and point them to new locations. MSISources allows 
drive letters or UNCs and allows absolute paths to be used (for example, 
\\Server\Share\acrobat\version5). In addition, MSISources allows re-rooting of existing source 
list paths. This feature facilitates easily consolidating or moving existing source locations 
without manually coding all the paths into the control file. When source lists are re-rooted, each 
existing source list is retrieved, and the drive letter or UNC is replaced with the new root 
location. 

� MSISources allows flexible remapping of the source lists of multiple installed packages at one time. 
For example, by running it in the logon script, you could use it to ensure that every installed copy of 
Visio on every computer in your company has its source list pointed to a managed location. You can 
download MSISources from http://windowsinstallertraining.com/msiebook. 

Designing the Package Distribution Repository 
In this section, we will talk about the considerations in designing the package distribution 
repository where packages will reside so that clients can access them for installations, self-
healing, patching, and upgrades. It is actually the scaling of the package distribution repository 
that creates the challenges and solution alternatives we will be discussing. If you work at a small, 
single-site company at which all packages can be put on one well-managed server, simply 
installing all of your packages from this server location would handle most of your repository 
challenges. However, as soon as the repository must take into account multiple sites, mobile 
computers, slow links, global organizations, and other similar factors, the repository must be 
designed and deployed correctly to effectively support enterprise-class software distribution. 

In Chapter 3, we briefly touched on the importance of these design activities. The following 
initial discussion will identify some reasons why organizations that have the option to use DFS 
might elect to choose other technologies. The remainder of the section deals with alternative 
configurations to DFS—this information will apply equally to those who could have DFS but 
choose not to and those who cannot have DFS due to technology or business limitations. 

0 The guidelines given here should be used carefully. A mix of DFS and non-DFS file sources is a 
viable solution. In fact, larger sites (as judged by the number of seats) that generally require fault 
tolerance and load balancing might also have the IT resources to justify a site-level DFS solution. 
Smaller sites could go without DFS if it posed design, deployment, or scalability difficulties for 
enterprise-wide implementation. 



Chapter 5 

 
128

When to Choose Something Other than DFS 
DFS deployment can be challenging to deploy or inappropriate for your computing environment. 
You might want to consider alternatives to DFS if your situation is characterized by any of the 
following statements: 

• You will not be deploying AD. 

• You have few sites or very small sites—DFS deployment in these locations might be 
overkill simply to support software distribution. 

• Global DFS can be difficult to design and deploy. DFS has some roots in the NT 4.0 
version of this technology which generates some limiting design recommendations such 
as 16 DFS servers per DFS namespace and only one DFS root being hosted on any given 
server. In many global environments, these limitations can prove difficult when DFS is 
being leveraged for multiple purposes. If you organization is planning multiple AD 
domains, DFS planning can become even more complex. 

• Not all sites in your organization are moving to Win2K and AD before Windows Installer 
packages need to be deployed. In companies with large overseas contingents or 
companies with regional budget responsibilities, technology spending tends to be need-
based. If desktop management is the only requirement for a given site to move to AD and 
DFS, there might be push back on these costs. 

• An extended desktop deployment to Win2K or Windows XP is planned. During this time, 
package repository services will still be needed for Windows Installer at all sites and/or 
for pre-Win2K desktops. For example, if you need to distribute the latest release of your 
MSI packaged virus software when your company is only halfway through a Win2K 
deployment, you will potentially need to deploy Windows Installer packages as sites 
without DFS and to clients that are not Win2K. 

• Delayed plans to move to AD can cause Windows Installer software distribution to 
become a higher priority as software vendor packages and internal packaging initiatives 
continue to develop. In this situation, the repository must be built before AD is available 
and be compatible with AD once it is in place. 

• Large environments might never be able to support AD for all desktop clients due to the 
sheer diversity of their networks or server environments. 

• A mass project to move to AD and Win2K or later clients is planned, but the project 
planning is unnecessarily hampered by DFS dependency on AD. In this case, requiring 
that AD deploy (even in a limited fashion) before desktop computers are upgraded can 
create costly dependencies for infrastructure migration projects. 



Chapter 5 

 
129

DFS Functionality Alternatives 
Earlier we talked about four main functions provided by DFS. Table 5.1 shows possible 
alternatives for these functional areas. A complete discussion of these alternatives is not possible 
in this book, but specific solutions are discussed in more detail. 

DFS Functional Area Alternatives 

Local sourcing (Getting files from the local site) • Managed drive letter 
• Managed environment variable 
• Source list management 

Universal availability/file location abstraction • Managed drive letter 
• Managed environment variable 

Fault tolerance • Source list management 
Load balancing • Complex source list management 

Table 5.1: DFS functionality alternatives. 

As with DFS, these alternative solutions have some infrastructure requirements: 

• A managed drive letter generally requires logon script changes so that the same drive 
letter is pointed to a local copy of the package repository at all locations. If this approach 
is extended to mobile machines, additional logon scripting is required to ensure that 
mobile machines map their drive letters to local resources when they are away from their 
home sites. 

• A managed environment variable might require similar logon scripting changes to ensure 
that the environment variable used is set correctly for every computer, including mobile 
machines if traveling support for local sourcing is desired. 

• Source list management might be as simple as including additional sources during 
package deployment, then using the policy to change the search order to network-based 
sources first. This solution is more static and generally cannot be easily adapted for 
mobile computer needs. 

• Complex source list management can provide a method of mimicking load balancing 
using an install-time script that ensures that each client install occurs from a pool of 
possible locations. Instead of using a static source list property, a script must be devised 
that can dynamically randomize a site-specific list each time a given package is installed. 
To accommodate mobile users, your list should always include a standard corporate 
location or site-specific location (environment variable) to ensure that mobile users can 
get to package sources while traveling to other locations. 

Figure 5.4 illustrates that you can use a combination of both source lists and file system 
approaches to effectively manage the package distribution repository. The illustration is showing 
all possible methods—any given company should be utilizing the same method for all packages. 
The Microsoft Office package in Figure 5.4 demonstrates the generally assumed model for 
IntelliMirror. DFS is set up to handle the main repository requirements—the source list on the 
client then only needs one entry. If the package is originally installed from the DFS location, the 
installation defaults for the package source lists work without need for changes or maintenance 
scripts. 



Chapter 5 

 
130

 

Figure 5.4: DFS for abstracting package source location. 

Managed Drive Letters and Managed Environment Variables 
Long before Windows 95 came on the scene, many companies accomplished local sourcing and 
file system abstraction by using a managed drive letter. Each physical location would run 
specific logon scripts that would set one or more drive letters to local locations. Users at every 
site would know that the Y drive was for data and that T contained software to install. Drive 
letters can still bring the benefits of local sourcing and abstraction to the current Microsoft world, 
and indeed, many companies have never abandoned their drive letter strategies for this reason. 
Figure 5.5 shows how drive letters can be used to abstract the repository to a local location. As 
long as packages are initially installed from Q, the source lists can remain unmanaged. 

\\ACME\PKGS

D
FS

Site 1 

Site 2 

SR
V1

 

MS Office 

Source List: 
 \\ACME\PKGS\OFFICE 

Site 3 

 Source List: 
 \\ACME\PKGS\OFFICE 

MS Office 

\\ACME\PKGS

SR
V6

 
SR

V8
 

MS Office 

SR
V3

 

 Source List: 
 \\ACME\PKGS\OFFICE \\ACME\PKGS



Chapter 5 

 
131

 

Figure 5.5: Drive letters for abstracting package source location. 

Drive letters are a well-established method of mapping to network-based file systems in 
Windows. Many different file systems are supported. The following list provides some of the 
benefits of a managed drive letter: 

• Eliminate DFS deployment concerns—Earlier we discussed several key concerns with 
the deployment of DFS. Using a drive letter solves many of these problems, including 
multiple domain AD designs (with possible multiple DFS namespaces), design 
constraints in scaling DFS, and small sites at which resources for supporting all 
infrastructure services might be scarce. 

• Relieve DFS domain bounded nature—DFS namespaces are in the context of a domain. 
Organizations that will be using multiple domains in their AD design will be faced with 
either creating the same software distribution DFS share in each domain (and deploying 
packages within each domain to that specific share) or using the DFS namespace of one 
of the domains in all the other domains, which would necessitate a domain controller 
with a DFS server running in close network proximity to each client that must use the 
share. 

• Eliminate deployment project dependencies—By using existing managed drive letters, 
extended Win2K deployments do not hamper the building of a distribution repository. 
This benefit addresses the problem in which desktop clients cannot deploy until enough 
DFS infrastructure is present to support package deployment. It also handles scenarios in 
which Windows Installer packages will need to be deployed to pre-Win2K clients while 
Win2K infrastructure is trickling through an enterprise organization. 

• Enable offsite, offline, and OEM builds—Some workstation build processes require that 
packaged software be called during the build. When the build depends on resources that 
are on your company’s private network (such as DFS), builds cannot be done while 
disconnected or by third-party system-building organizations. 

Q:

 D
riv

e 
M

ap
pi

ng
 Site 1 

Site 2 

MS Office 

Site 3 

Source List: 
 Q:\OFFICE 

 Source List: 
 Q:\OFFICE 

MS Office 

SR
V6

 
SR

V8
 

Q:

MS Office 

SR
V3

 

 Source List: 
 Q:\OFFICE Q:



Chapter 5 

 
132

• Eliminate source list management during system provisioning—Packages can easily be 
loaded from any file source connected to the managed drive letter. When the client is 
deployed to the final location, source lists will work fine without clearing or rebuilding 
the list because the same drive letter is mapped to the relevant local resources. 

• Eliminate drive imaging concerns—Using the same drive letter for software eliminates 
concerns for deploying drive imaged systems because the drive letter can easily be made 
available in every location. 

• Work with latest technologies—If necessary, drive letters can also work with 
technologies such as DFS by simply mapping a drive letter to the DFS share name. Drive 
letters can be used by Group Policy deployment as well. 

) Group Policy will automatically resolve the UNC of a network mapped drive and embed it in the 
software distribution configuration. To override this behavior, use the SUBST command (built-in 
console command) to map the drive. 

• Work with all client OS versions—Domain-based DFS share access is limited to Win2K 
and later desktop OSs. Additional DFS functionality can be achieved by previous desktop 
OSs by installing the AD client; however, an enterprise-wide deployment of the AD 
client can pose its own challenges. 

• Work with any network client type—Whether you are using Microsoft or the Novell 
network client (or a third-party client), a drive letter mapping will work. 

• Use any back-end server system/file system—Any file system that a drive letter can be 
mapped to could be used as a repository, including UNIX systems, mainframe systems, 
mid-range systems, and any other type of server that can have a drive mapped to it in 
Windows. 

• Turn off drive letters—By unmapping a drive letter, the repository can be made 
unavailable. When using DFS, if a local repository server is not available, DFS will 
randomly select one from the list and map to it over whatever network links are between 
itself and the first successfully contacted server for the DFS namespace. In some 
environments, this over-the-WAN behavior has a much higher impact on system and 
network resources than the problem of individual desktops not being able to load 
software. 

• Allow for a universal approach—Because drive letters can be mapped to any network 
resource as well as any local device (such as CD-ROM, zip drive, hard drive, LS 120 
drive) the same drive letter can be utilized for local and remote package loads—keeping 
source lists consistent across online and offline storage. 

• Enable site-level responsibility for repository—Some companies operate with 
independent IT resources at each site. Standards are used to ensure interoperability. Using 
drive letters for the repository allows the standard to be loose—letting the site determine 
how to store repository files. The site can implement local repository services by simply 
replicating the files from an agreed location and mapping the repository to an agreed 
drive letter. 



Chapter 5 

• Integrate with many ESD systems—Using a drive letter allows the distribution repository 
to be utilized by many software distribution systems. The drive letter can also be 
leveraged via custom pull menu systems and by technicians who can browse the 
distribution repository directly. SMS 2.0 and 2003 (code-named Topaz) can be 
configured to use such a repository. Any ESD that can pull files from a drive letter can 
most likely work with this configuration. Some ESD systems use specially prepared file 
sets and cannot source files directly from the file system mapped by the end user. 

• Use drive letters at times when DFS cannot be used—Suppose you wanted to use the 
repository for building the OS on workstations and you are using a DOS boot disk—the 
DOS boot disk can access a drive letter-based repository. You can use drive letters when 
DFS is not an option. 

Figure 5.6 illustrates that the repository can be leveraged for many software distribution 
activities, including the initial machine build. 

 
133

 

Figure 5.6: Multiple use repository. 

Use an Existing Drive Letter 
It might be difficult to clear a single drive letter across your organization just for distribution 
packages; however, you might be able to use an existing drive letter. A new subdirectory can be 
created on an existing shared drive. With Win2K server disk management, this subdirectory 
could be served by new, dedicated disks. Server-level DFS can also be leveraged to make the 
subdirectory point to another server. 

Site 1 

Site 2 

Site 3 

 

 

 

 

 

 

 

 

Q: 

CD

HD

MSI Self Heal and 
 Install on Demand 

Si
te

 D
FS

 

Machine Build Pull 

Software 
Distribution 

System Push

(SMS DP) 

AD Push

User Pull from Media or Network

(NT 4.0/UNIX/NetWare)



Chapter 5 

Use an Environment Variable in Source Paths 
If a dedicated managed drive letter or a directory on an existing managed drive letter does not 
work for your organization, it is possible that an environment variable could provide the 
flexibility needed to manage source lists. Source lists will allow an environment variable to be 
embedded in the source reference, and Windows Installer will properly retrieve the environment 
variable value before scanning source locations. An environment variable can provide a single 
reference in all packages that can be set individually for specific sites, regions, or even individual 
computers. Environment variables can also be set dynamically for special deployment jobs such 
as packages located in a non-standard location for security reasons. 

The flexibility benefits of environment variables come with some challenges that are not present 
with a drive letter solution. Some ESD systems might not be able to invoke a package using 
environment variables in the command line. In many cases, you can work around this drawback 
by having the distribution system call a batch file. Figure 5.7 shows how an environment 
variable can abstract package source locations to point to any type of file system resource at local 
sites. Note that the source list must be cleared of the initial install location and the environment 
variable location added. 

 
134

 

Figure 5.7: Environment variable for abstracting package source location. 

The use of environment variables also requires some source list management through which a 
drive letter strategy can be devised that does not require source list management at all. Source 
list management is required because the first source list location is the location from which the 
package was originally installed. This original location must be resolved to a literal disk location 
by Windows Installer in order to get the package installed on the system; it will always contain a 
direct reference to the location of the package, not any environment variables used when calling 
the package location. The absolute location must be cleared from the source list in order to rely 
completely on the environment variable. 

%PACKAGES%

 E
nv

iro
nm

en
t V

ar
ia

bl
e Site 1 

Site 2 

MS Office 

Site 3 

Source List: 
  %PACKAGES%\OFFICE 

 Source List: 
 %PACKAGES%\OFFICE 

MS Office 

SR
V6

 

Q: 

SR
V8

 

R: %PACKAGES%

MS Office 

SR
V3

 

 Source List: 
  %PACKAGES%\OFFICE %PACKAGES%\\SRV3\SW 



Chapter 5 

 
135

Drive Letter and Environment Variable Infrastructure Requirements 
Universal drive letter and environment variable solutions have some infrastructure requirements 
that DFS handles automatically. DFS automatically provides information about where in the 
physical network a client is located. DFS does so dynamically, regardless of how the client 
connects or whether logon scripts run. DFS then maps the client to local servers for the given 
domain-based share. When creating a custom solution, some or all of these dynamic capabilities 
might need to be mimicked if your environment requires them. 

Many organizations already have well-established logon script designs that can easily suit 
repository mapping needs as well. If you have deployed AD, you can use ADSI scripting to learn 
the physical location of the computer and map the local repository based on that information. 
Without AD running, a custom solution must be devised to assist with pinpointing the physical 
location of computers on your network. The IP-based cool tool solution that will be discussed 
shortly has an advantage over ADSI scripting in that it can match multiple hierarchical location 
contexts such as Europe AND France AND Paris and Mercer Building. The follow two cool 
tools can help you by providing some key elements to a scripted solution. 

� SiteSense.vbs is a script for detecting a computer’s exact physical location by determining which 
subnet the computer is on. Once the computer’s physical location is pinpointed, it can be used to map 
a local version of the package repository. This functionality is similar to AD’s built-in sites functionality. 
However, SiteSense only uses the computer’s IP address, so you can use it with any version of 
Windows, any network OS, and any directory service. You can download SiteSense from 
http://windowsinstallertraining.com/msiebook. 

 

� VPNRASLogonHook handles several cases in which logon scripts do not reliably execute. Logging on 
to the network from a VPN or RAS generally does not run the logon script. As of the release of 
Win2K, dynamically plugging in a network card also allows users to access network resources without 
running the logon script. VPNRASLogonHook uses WMI to detect when a network connection occurs 
and runs the logon script if it is available. You can download VPNRASLogonHook from 
http://windowsinstallertraining.com/msiebook. 

Package Source List Management 
Active source list management can help ensure that source lists correctly point to local package 
repository locations. This approach does not dynamically allocate local sources for mobile 
computers, but can provide an effective approach for desktop machines. 

Some organizations use MSISources, which was introduced earlier, on the first boot of a newly 
built computer. A primer script detects the computer’s physical location and remaps all managed 
packages to the local repository server. This script could be run during computer moves or 
scheduled periodically to correct source lists for desktop computers that change physical 
locations. 

http://windowsinstallertraining.com/msiebook
http://windowsinstallertraining.com/msiebook


Chapter 5 

 
136

When to Choose Something Other than FRS
The Win2K version of FRS is capable of replicating reasonably sized logon script directories. 
Replication loads that are more intense in their size or replication frequency can be quite difficult 
to manage with FRS. The following list provides the primary attributes of FRS that make it 
unsuitable to the loads generated by large-scale replication: 

• Multi-master replication methodology—A multi-master model means that each server 
copy of the replicated files can be independently changed and the changes will be 
automatically replicated to all other servers. This model is a big plus in the area of 
directory services but creates difficulties in software distribution where there is generally 
assumed to be a single master copy of software distribution packages that should be 
replicated to every other location. 

• Full mesh replication topology—I have referred to this topology as “full mess” 
replication topology. When a set of servers are configured to keep a single, replicated 
copy of files, each server maps directly to every other server, regardless of physical 
network topology. Servers at end sites of the physical network will attempt to 
communicate with each other to exchange files that have changed. 

• Unrestrained automatic operation—Once configured and turned on, replication happens 
automatically, immediately, and has no performance governors between physical sites. 
Thus, replication cannot be constrained in terms of bandwidth usage or scheduling times 
of day when distribution should occur. 

0 Rudimentary editing of FRS replication topology and replication schedules is possible but a brief 
encounter with the editing utilities reveals these capabilities to be ill fitting in enterprise environments. 

• Lack of human-readable logging—Although FRS has logging for its internal purposes, 
these logs use globally unique identifiers (GUIDs) to track multiple versions of the same 
named file. This system essentially makes them unusable for tracking replication 
problems. In addition, there is no audit tracking for finding out which user IDs might be 
responsible for accidental replications that can have a high impact on network and server 
resources. 

Even when used in a LAN environment, the flurry of activity created by FRS replication might 
generate uncontrolled peak loads for networks and distribution servers. 

FRS Alternatives 
There are several alternatives to FRS that might be considered for replication of the package 
distribution repository. Specialized replication software manages replication by making sure that 
bandwidth usage can be controlled through scheduling and throttling. Replication topology can 
also be designed to coincide with physical network layout and individual link utilization. 

Many enterprise-level ESD systems have robust built-in replication. Bandwidth can be scheduled 
and throttled and topology can be managed. It is unlikely that an ESD can be cost justified based 
on replication needs alone; however, if you already have one, you might be able to leverage it for 
your repository needs. 



Chapter 5 

 
137

0 Any replication system (or the underlying network) can be overloaded if your package release 
strategy does not account for long-term network bandwidth requirements and server disk space 
requirements. For instance, if your methodology allows software application owners to request 
package updates at any time and then build and replicate an entire upgrade package for every 
change, it can generate big strain on replication bandwidth and the replication management system. If 
you also keep older copies around for too long, disk space can be strained. 

Many companies have used NT or later shell scripting (.CMD or .BAT) and the resource kit 
utility ROBOCOPY to implement their own replication scheme. Implementing replication with 
scripting rather than a product is a challenging exercise—especially in a large organization. 

� Tim Hill’s Windows NT Shell Scripting (New Riders Publishing) contains a complete and robust 
sample script called REPL.BAT that uses ROBOCOPY to emulate logon script replication. This script 
could serve as a starting point for creating a script-based replication system. 

BITS was mentioned earlier as a cool tool to perform trickle replication to remote desktop 
clients. It might also be used a method of low-impact replication between servers on your 
network. You will need to be running Win2K SP3 on your servers to use BITS directly on the 
server. In addition, the file source must be an HTTP server. If Win2K SP3 is not an option, you 
could script a Windows XP desktop to transfer the files and then move them to a server. BITS 
might not be a good alternative if you are transferring a large number of files—for instance, if all 
your package sources are administrative installations. 

Directory Structure Issues 
Up to this point, we have been discussing the repository location in terms of the root location—
the location where packages are stored. This root location would be a UNC or drive letter. We 
could simply put all our packages at the root of this location if they all had different names. 
However, it is important to choose a directory structure for the repository that will be flexible 
and be scalable. 

For pre-Windows Installer package repositories, some organizations have used a convention of 
having the latest package version in the same directory so that it is easy to locate. The location of 
the latest version might need to be known by technicians browsing the repository and by 
automated build processes and pull menu applications. Windows Installer adds a new wrinkle for 
this approach. When a package is installed from a network location, Windows Installer will 
return to that location to find the MSI file and the associated software application files. If 
Windows Installer determines that the MSI file is not the same as the one that was installed from 
that location it might refuse the location as a valid source. 

This occurrence might not present a problem for applications that have a limited distribution 
scope (number of seats, number of sites) because they can all be updated to the latest version in a 
fairly short time. If, however, you are updating software in an organization of 30,000 desktops, 
the sheer time it takes to update every one might result in problems with self-healing or new 
computer builds if the new version is pushed to all distribution servers as the first step in 
deploying the updated package. If local sites have responsibility for triggering desktop 
installations, the time lag between a centralized push replication to distribution points and local 
site installation on clients might be unpredictable. This creates the same problem with regard to 
self-healing and other Windows Installer activities not completing due to the wrong version of 
the source. 



Chapter 5 

 
138

You might want to consider a scheme that allows a distributed package to reside in its destination 
directory indefinitely and use another approach to identify the latest version. For instance, a 
batch file could be created called current.bat that would contain the command line to use for the 
current production version of the package. This batch file could be read and parsed or simply 
executed by automated processes and administrators. 

Directory Structure Considerations 
This section will consider several key Windows Installer issues when designing a directory 
structure for the package distribution repository. The following list offers some of the high-level 
considerations: 

• If you are using administrative install shares, multiple versions of the package cannot 
have the same directory root. The reason is that each version will have files of the same 
name and directory location—the install share would end up being a mix of files from 
multiple versions. Windows Installer does not check the actual version of the file on disk, 
so an installation could be performed from this share, but the software might be 
inoperable and self-healing behavior could be erratic. 

• Schemes that are too shallow could take a long time to enumerate, which causes delays 
when browsing the directory or enumerating it with maintenance or pull menu 
applications. 

• Schemes that are too deep might not fit on offline media (if replication to offline media is 
a part of your scheme). 

• If you plan to use path rules with software restriction policies, make sure that your 
chosen directory structure does not result in overly complex rules. 

The following example provides a good place to start with directory structure: 
<root>\<pkg_ident>\<version>\<filename>.msi 

This structure allows each package version to exist simultaneously, which prevents problems 
with self-healing and install-on-demand during lengthy upgrade cycles. It also allows multiple 
administrative installs of the same package because each administrative install uses the 
<version> directory as its root. Some type of batch file or other file can be stored in the 
<pkg_ident> directory level to ensure the current version. This scheme can also work well for 
storing informational data such as instructions, documentation, logs, and so on. The following 
example shows an alternative to the previous scheme: 

<root>\PACKAGES\<pkg_ident>\<version>\<filename>.msi 

This scheme allows more portability and flexibility for where the software share is placed 
because it does not assume that it owns the root of the file location. For instance, if you need to 
place the distribution repository on an existing drive letter or DFS namespace, this scheme would 
be helpful. Even if you currently have a dedicated root location, consider what happens when 
you scale up your implementation. Also consider whether other IT departments might want to 
piggy back their needs on your repository strategy; using the PACKAGES directory allows 
multiple functional sublocations under the root locations. 



Chapter 5 

 
139

0 You might be tempted to store the command line for the “current version” in SMS or some other 
distribution system configuration. This information will be much more flexible and accessible in a 
batch file because it can be utilized by less capable automation activities such as initial computer 
builds and by technicians without the need to rifle through the distribution system to learn the 
appropriate command line. 

The following schemes are based on traditional non-Windows Installer approaches, so they are 
bound to come up during repository design. These schemes might not work well: 

<root>\<pkg_ident><version>\<filename>.msi 

When the version is attached directly to the directory level for the package identifier, the number 
of directories under the root location might become difficult to manage. This approach also 
makes it more difficult to establish a method of identifying the current version of a package 
because the files that do so must reside in the package root directory. 

<root>\<pkg_ident>\<version><filename>.msi 

When the version is appended to the file name and stored in the same directory as other versions, 
administrative installations cannot be used. 

Administrative Installs 
Chapter 3 covered administrative installs; in this section, they will be explored specifically in 
regard to considerations of building the repository. Most likely, you will have some type of 
administrative installs in your repository. The consideration is whether to make it a standard 
practice to make all of your network deployed packages into administrative installs. There are 
several issues revolving around using administrative installs in your distribution repository. 

� In Chapter 3, we covered some reasons why you might want to create administrative installs. The 
following list provides a quick review: 

  To present properties (such as TRANSFORMS) for execution when the MSI is double clicked. 

  To use served applications. 

  To pre-activate Microsoft products (and to deploy patches to them). 

  To reduce the required server-to-server replication load by patching admin shares with updates. 

  To extract only the needed files from your installation media. 



Chapter 5 

 
140

Using administrative installs in your distribution repository can be a good long-term 
implementation decision if you have site-to-site bandwidth constraints because you can patch 
administrative installs to reduce the server-to-server replication load. Only patches need to be 
replicated and executed. There are some qualifiers to this approach:  

• The initial replication load is much higher than compressed source files. 

• The extra effort to build reliable patches is significant. 

• An automated or manual activity must execute the patch on all distribution points—
something that does not need to be done with straight replication of complete packages. 

• If you want to keep previous versions intact for self-healing to work properly, you must 
locally copy the administrative directory to a new location before applying the patch. 

• Offline media replication (sending a tape or CD-ROM) might be less work than a full-
scale patching approach. 

The following list provides additional considerations (aside from a patching strategy) that should 
be a part of your discussion when designing a distribution repository that includes administrative 
shares: 

• You will most likely have to deploy some administrative installs, even if your strategy is 
to favor not using them. For instance, Microsoft Office products assume that network 
distributions are always done from administrative installations. 

• If you use administrative installs for all of your packages, disk space requirements will be 
much higher—potentially double that of compressed .cab files or .cab files stored inside 
the MSI. 

• The number of files being replicated will be much higher with administrative installs. It 
will be important to ensure that your replication technology is up to the task. 

• If you are using code signing of MSI packages for your packages, you will need to 
replicate the signed version. Patched administrative installs will need to be re-signed. 

• Directory structures for a repository might become too deep to fit on offline media. 

This list might make it sound as though administrative installs are not a good idea. Such is not 
the case. Rather, because most traditional package repository schemes use some type of 
compressed source (setup.exe files), it is easy to overlook the many additional considerations of 
using Windows Installer administrative installs. 

0 AD cannot deploy patches directly to clients, which seems to have led Microsoft’s software 
deployment guides to emphasize administrative installs for network-based deployments. If patching 
administrative shares is not a part of your deployment strategy, you can effectively use compressed 
source files (external or internal .cab files) to manage your distribution repository. 



Chapter 5 

 
141

Repository Availability Service Level Agreement 
The magic of Windows Installer self-healing implies to many end users and business 
departments that their applications will never break, no matter how far mobile computers travel 
from their home base. As you build a repository strategy, you will learn that it would take an 
immense amount of human and technological resources to keep that promise in every single 
usage scenario in a global company. It is, therefore, important to establish a service level 
agreement (SLA) that sets reasonable bounds around when users and business departments can 
expect magic and when they will receive a prompt for a package location. 

For example, perhaps self-healing can be expected to work when mobile users are on their home 
continent. For some organizations, self-healing might only be expected to work when mobile 
users are at their specific physical site. Whatever the case is at your company, be sure to go 
through the design activity to balance your implied or formal SLAs with the IT resources that are 
required to get the job done. 

Package Deployment Technology Planning 
AD and Group Policy provide the capability for an out-of-box Win2K implementation to 
perform software distribution to desktop computers. IntelliMirror technologies can provide a 
workable software distribution solution for workgroup environments or companies that have 
fewer sites that operate fairly independently. There are two high-level indicators that you might 
need more than IntelliMirror can provide: 

• If AD and/or Win2K or later clients are not in your future or are in a slow-burn 
deployment plan, AD deployment capabilities might not help you in the immediate term. 

• If you are accustomed to a full-featured software deployment system, AD might not be 
able to meet your current SLAs. 

0 Many companies assume that they can eliminate the cost of their current software distribution system 
when moving to a full deployment of AD and Win2K or later desktops. Once this idea gains 
momentum, it can be difficult to turn back. I advise that you insist on a thorough feasibility study of 
whether IntelliMirror is up to the challenge of your current distribution system requirements before this 
momentum starts to build. 

IntelliMirror has limitations, some of which stem from the fact that it is piggybacking on a 
directory service, others result from the simple model of deployment scenarios that IntelliMirror 
targets. It can be difficult to get a comprehensive view of how these limitations stack up against 
existing and future SLAs. 

� SLAs are a critical part of technology design activities. SLAs can be formal or informal. For instance, 
you might have a signed document stating that a user will receive a software distribution within 24 
hours of requesting it. Informal SLAs can carry as much or more clout than formal ones. It might just 
be a foregone conclusion in your company that software distributions always occur at night to prevent 
user interruption—even if there is no signed document to back this assumption, everyone intuitively 
understands what would happen if distributions were to be done during working hours. Assessing 
whether a technology can meet your formal and informal SLAs is a critical step and can be an early 
indicator of whether your implementation will be ultimately accepted by all stakeholders. 



Chapter 5 

 
142

IntelliMirror Fine Print 
IntelliMirror has limitations with regard to how it can classify objects because it uses the 
directory service to do so. It also has very limited functionality for non-MSI packages. In the 
areas of reporting, logging, and scheduling distributions, IntelliMirror is lacking. The following 
bullet points provide a fairly complete list of these limitations and their potential effects on your 
software distribution design: 

• The ability to target users and computers for software installation is limited to AD’s OUs. 
This hierarchical container classification only allows a single container membership for 
each user and computer. Many ESD systems allow for objects to be classified in multiple 
groupings or containers. In AD, container membership is arbitrary, while many ESD 
systems allow targeting by inventoried hardware information. IntelliMirror allows 
filtering of distribution targets by security groups, and in Windows XP, IntelliMirror 
allows filtering by WMI queries executed on clients; however, this flexibility comes at 
the cost of multiple layers of target filtering that are evaluated at different stages of 
distribution. 

• Most of AD’s inheritance is within the bounds of a domain. Distribution targets, security 
groups, GPOs, and delegated authority are all relative to the domain they are configured 
within. If your company will have multiple domains, many distribution configuration 
activities will need to be repeated for each domain. In addition to being a lot of work, this 
requirement can lead to quality issues when detailed work such as this must be repeated 
many times. 

• AD’s classification scheme (sites, domains, OUs) is leveraged by a company for many IT 
management and business unit purposes. With so many requirements that stem from 
outside of software distribution, the directory structure naturally becomes inflexible to all 
but the most pressing needs. Because ESD systems focus on software distribution, many 
times their underlying classifications schemes can be adjusted or reworked with no 
implications for other parts of the IT or business organization. In addition, excessive 
fragmentation of directory nodes (OUs) for the purpose of distribution targeting can lead 
to an unmanageable directory configuration. 

• Non-Windows Installer package distribution is difficult and severely restricted in 
IntelliMirror. Non-Windows Installer packages cannot use elevated privileges and they 
can only be published to the user. Thus, a user must visit the Add/Remove Programs 
applet in the Control Panel to kick off the distribution. Although MSI wrapper scripts 
have been developed by Microsoft and others to distribute items such as service packs, 
they are definitely a workaround use of Windows Installer technologies and can be 
difficult to learn and maintain. 

• IntelliMirror uses a simple methodology for triggering distributions. During the boot up 
and logon process, users are not using applications and cannot have locks on key system 
resources or applications that need to be updated. For this reason, IntelliMirror only 
distributes software at that time. This activity can, however, result in peak loading for 
distributions because many users logon or boot up at common times. 

0 Software distribution policies differ from other Group Policies in that they DO NOT refresh every 90 
minutes—they only occur at boot up (for computer-targeted distributions) and logon (for user-targeted 
distributions). 



Chapter 5 

 
143

• The inability to schedule distributions to desktop clients is a result of the simple 
methodology mentioned in the previous point. The implications of this limitation vary by 
company. Some companies use scheduling to prevent interruption of business activities 
(for example, overnight distributions), other companies use it to offset the load placed on 
the network and distribution servers. To help with this, IntelliMirror only advertises 
software when it is assigned to users. However, as discussed in Chapter 3, there are 
several key reasons why software should be installed per computer rather than per user. 

� Windows Server 2003 will allow users to have software completely installed when assigned rather 
than only being advertised. 

When to Consider Alternatives to IntelliMirror Deployment 
The previous considerations might be difficult to evaluate for any given organization. The 
following list enumerates attributes of your technology environment and key distribution system 
features that might indicate that you need to choose another technology for software deployment: 

• Large-scale implementations with large numbers of clients and/or many sites might find 
that the lack of logging restricts their ability to deliver distribution services in the same 
fashion traditionally expected by business units and end users. 

• Desktop management and software distribution activities have formal SLAs associated 
with them that require a distribution success rate or exception reporting. Environments 
with formalized service levels might find IntelliMirror unable to provide needed detailed 
and summary reporting to prove the service level is being met. 

• Homogenous environments that will always contain many different directory services, 
desktop OS, and server OSs might find the limitation to AD to be too restrictive. 

• The inability to schedule distributions can have a surprising number of cascading effects 
on other distribution activities. Ensure that this factor is evaluated thoroughly. 

• Organizations that want to manage servers as well as desktops with the same system will 
find that IntelliMirror’s focus on interactive use (reboots and logons) and Windows 
Installer technology make it a difficult fit for server distributions. 

• Companies that are coming from distribution systems that have a mature set of 
distribution capabilities (including SMS, Novell’s management products, or any of the 
integrated desktop management suites available) might be surprised by what they would 
be giving up to move to an IntelliMirror-only system. 

This last section paints a restrictive picture for organizations that choose IntelliMirror for their 
package deployments. IntelliMirror is a very respectable solution for the class of businesses that 
have traditionally been targeted for Microsoft’s Small Business Server offering. For these 
companies SMS is definitely overkill. 

However, this ideal implementation target for IntelliMirror distribution has been stretched by 
unrealistic expectations of upward scalability and cost effectiveness for enterprise environments. 
If you feel that IntelliMirror might be suitable for software distribution in your environment, be 
sure to do your homework. 



Chapter 5 

 
144

Summary 
Platform 2000 (Win2K servers + AD + Win2K desktops) was presented to the market with 
intricate interdependencies that can make it difficult to understand how to extract value from 
specific subassemblies such as Windows Installer. Hopefully, this chapter has unraveled a few 
mysteries and given you some alternatives to think about if you are implementing Win2K 
management technologies. This chapter is the last to be written by me, as Jeremy will be 
wrapping up the book with a final chapter about distribution systems. I hope to cross paths with 
you at conferences, in my training class, and on the Internet!



Chapter 6 

 
145

Chapter 6: MSI Deployment Roundup 

by Jeremy Moskowitz 
 

They say that getting there is half the fun—if such is the case, you’ve already experienced half 
the joy of your MSI deployment journey. Up to this point, you’ve been through the ins and outs 
in getting your MSI file “just right.” In Chapter 1, you learned about what an MSI file is and why 
you would want to use one. In Chapter 2, you discovered the tools you can use to create MSI 
files, and in Chapter 3, became familiar with the internals of the files. In Chapter 4, we explored 
the best practices for building MSI files, and in the last chapter, you learned how they work 
inside and outside AD environments. Now, you’re ready for the last leg of the journey—the 
deployment to your client systems of the MSI files you’ve created. In this chapter, we’ll explore 
myriad free, cheap, and third-party deployment options for getting the MSI file from the 
administrative workstation where you developed the package onto the plate of each of your 
systems. Let’s start with MSI deployment methods that are free. 

) While reading this chapter, try to determine how and where to standardize. You will be much happier 
with your day-to-day MSI deployments if you can find one “tried and true” method for your 
environment and stick with it. All of the following options are approaches to solving the same 
problem—getting the MSI file onto the user’s desktop and installing it. With so many possibilities, 
you’ll benefit from standardizing on one method, if possible. If that’s not an option, you can 
standardize on an option for each specific type of problem. For instance, you might use one method 
for the home office and another for branch offices. 

MSI Deployment for Free 
When it comes to deploying your MSI file to your client base, you’ll need some sort of 
deployment mechanism to get the MSI tool to the desktop. Free is good, but be wary as 
oftentimes you get what you pay for. The free deployment methods each have pros and cons (the 
pros generally being that the method is free), but on a limited budget, these methods might just 
be the best or the only option. 



Chapter 6 

Sneakernet 
Sneakernet is the tongue-in-cheek description of, basically, running around to each workstation 
to perform the same task. After you have developed your MSI file, you could, theoretically, burn 
a copy to CD-ROM and roam the halls, hopping from desktop to desktop to perform the 
installation. This method is as simple as popping the CD-ROM or floppy into the user’s system, 
and double-clicking to start the installation. However, if the user does not have Administrative 
rights on his or her workstation, a simple MSI package could generate a host of miscellaneous 
installation or runtime problems, as Figure 6.1 shows. 

 

Figure 6.1: Most packages require Administrative privileges. 

This scenario represents most environments, in which users don’t have administrative rights on 
their workstations. Thus, you will need to perform the installation on behalf of each user through 
Sneakernet. To do so, you’ll need to elevate the user’s installation rights, and perform an 
installation on behalf of a user by using the runas command. For information about runas, see the 
following sidebar “The Runas Command.” 

 
146



Chapter 6 

 

The Runas Command 

The runas command has the ability to allow a particular process to run in the context of another user; 
say, the administrator of the local workstation. Once the rights are in an elevated state, the administrator 
has the control required to accurately perform the installation. The runas command takes the following 
form: 

runas /user:{DOMAIN}\{username} command.exe. 

After you run this command, the system then prompts you for the password of the user to elevate. If the 
command you want to run has any spaces, you need to put the command into quotation marks. 

To launch an MSI file in an administrative context, you can’t simply specify the .MSI file on the command 
line; instead, you need to call the parent application for an MSI file—MSIEXEC. As you might recall from 
Chapter 1, one of the command-line syntaxes of MSIEXEC—specifically msiexec /i—will perform an 
installation. You can use runas and msiexec together, as Figure 6.2 shows. 

 
Figure 6.2: The runas command can help install packages that require administrative privileges  

 
147



Chapter 6 

 
148

Sneakernet will work best for only the smallest environments. After about the tenth workstation, 
the installations will become very tedious. In addition, only the most finely tuned MSI packages 
will be successful by using Sneakernet because, in general, your MSI packages will usually ask 
for qualifying information, such as the directory to install to, the features desired, and so forth. If 
there is more than one person performing the installation, there’s likely going to be more than 
one method of installing the software. More methods equals more errors equals more problems. 
Even with the best documentation, the best staff, and the best of intentions, there is still the great 
chance of error during installations. Unfortunately, even with the best of intentions and direction, 
when you give an .MSI file to 100 people, you could potentially wind up with 100 different 
installations. 

Sneakernet has the following cons: 

• No guarantee that the population to which you’re distributing has the software installed in 
the same manner 

• No guarantee that the population has the correct hardware to run software 

• No guarantee that the staff loading the software has the correct knowledge to do so 

However, Sneakernet does have pros: 

• Increased contact between IT staff and end users 

• Free one-on-one training opportunities after post-load 

Batch File Installation 
One method that does the job of deploying MSI packages is the good ol’ batch file. Although this 
technique is a bit raw in practice, many systems administrators have honed it to a fine art. The 
idea is simple: modify your network logon scripts to determine whether a user is in a particular 
group, and have the batch file kick off the installation for the user. 

To successfully pull off this trick, you can choose from many tools that will help you determine 
the group membership of the currently logged on user. One such tool is easy to find as it’s 
available in the Win2K resource kit—IFMEMBER.EXE. You can call this tool in a basic batch 
file or use the more powerful KiXtart, which is a full scripting language and can be substituted 
for normal logon scripts. 

� KiXtart 95 is located in the Win2K resource kit. For Win2K, it has been updated to allow for 
conditional branching based on Win2K AD sites. For instance, if the computer that runs the batch file 
is in the New York site, then perform some actions, and if the computer that runs the batch file is in 
the Philadelphia site, then perform some other actions. An even newer version of KiXtart, KiXtart 
2001, is available at http://www.kixtart.org/. 

For an example, we’ll use IFMEMBER.EXE, which will raise the environment variable error-
level code to 1 if the membership is met. For instance, suppose you had an NT or Win2K 
domain-based group named ITGROUP with a member named John, and John logged on, then the 
error-level code would be set to 1. With this little bit of knowledge, you can get much 
accomplished. Listing 6.1 shows an example logon script addition that begins to achieve our 
goal. 

http://www.kixtart.org/


Chapter 6 

 
149

 
ifmember DOMAIN\ITGROUP 
if not errorlevel 1 goto NOT_ITGROUP 
   rem load IT Group’s software 
EXIT 
:NOT_ITGROUP 
   rem load other groups’ software 
EXIT 

Listing 6.1: Example IFMEMBER logon script addition. 

In each part of the branch, you would run an MSIEXEC command with the software you wanted 
to install. However, if you ran this script upon next logon, once again, MSIEXEC would kick off 
and reload the software. To prevent this from happening, one option is to enhance the batch file 
to place “flag files” in strategic locations of the file system for each loaded piece of software. For 
instance, if you were loading DogFoodMaker5.msi, you might use the logon script to place a 0 
byte DogFoodMaker5.txt file on the C:\ drive. In addition, we need one more line of code to 
jump over the MSIEXEC installation if we’ve placed the file there before, and presumably we’ve 
performed the installation. Therefore, we enhance our logon script a little bit by adding the lines 
that Listing 6.2 shows. 
If exist c:\DogFoodMaker5.txt goto BRANCH2 
Echo software_loaded > c:\DogFoodMaker5.txt 
MSIEXEC /I \\server\share\dogfoodmaker5.msi 
:Branch2 
rem check to see if next flag file exists 

Listing 6.2: Additional example text to add to a logon script. 

This code will use the command interface’s if exist command construct to verify that the flag 
file exists. If it does exist, then jump to another branch of the batch file or exit. If not, create the 
flag file by using the echo command, and create a flag file on the fly—in this case 
DogFoodMaker5.txt with the works “software_loaded” inside it. Finally, execute MSIEXEC 
with the /i switch to load the software. 

) You might also choose to make the flag file a hidden file (via the attrib command) to ensure that it’s 
not readily seen by prying eyes. 

However, if the MSI installation fails, this addition to the logon script could be a disaster because 
the flag file is already written but the MSI installation didn’t fully complete. You might use other 
additional checks, such as the known path to the .EXE file, or use additional tools to search the 
registry for the MSI’s GUID. 

As we learned in the Sneakernet section, you might run into situations in which you need to 
launch the MSIEXEC command in the context of the administrator. To do so within a batch file, 
you would need to expose the administrator password in the batch file with a command such as 
SU (found in the resource kit), causing a security risk by having the password totally exposed. 
To combat that, you might want to inspect myriad batch file compilers, which will wrap up batch 
files into .EXE files, which cannot be read as the logon script goes by. Although this method 
isn’t the most secure for accomplishing this task, it at least presents a deterrent. 



Chapter 6 

 
150

� Both NT and Win2K domains can optionally execute .EXE files instead of just .BAT files for the logon 
process if desired. 

 

) One such batch file compiler is called Winbatch + Compiler. You can find this tool at 
http://www.winbatch.com/wb-compiler.html. 

As you can see, the process of creating a batch file is easy but not simple. Every time a package 
changes, you need to keep on top of the script or scripts that are called to do the work. You have 
a new package? You change the logon script. However, most troubling, is that if something goes 
wrong during the MSI installation, users might not be able to interpret the feedback to help you 
assist with troubleshooting. The free nature of batch files might make them a tempting option, 
but they are usually difficult to work with when you have many MSI files and many machines to 
deploy to. 

Batch file deployment has the following cons: 

• No guarantee that the population has the correct hardware to run the software 

• No centralized reporting to administrator if something goes wrong 

• Batch file maintenance could be burdensome 

However, batch file deployment has the following pros: 

• Batch file creation is easy 

• With enough elbow grease, you could have one logon script controlling all software 
deployments 

• Theoretically, guarantees that a specific population of users (NT/Win2K group) has the 
same software 

http://www.winbatch.com/wb-compiler.html


Chapter 6 

Microsoft MSI Deployment with Group Policy 
In Chapter 1, we discussed the Windows Installer service built-in to Win2K and newer clients. 
As a refresher, the Windows Installer service installed in Win2K can be seen in Figure 6.3. 

 

Figure 6.3: The Windows Installer service is built-in to Win2K and Windows XP. 

It’s not the service itself that’s exciting, rather what can be done with the service. This service 
really comes to life when the Win2K client is used within a Win2K AD. The reason is that the 
service enables you to centrally deploy MSI files without having to worry about the 
administrative context of the user. 

To connect to and leverage the Win2K service, you’ll need to work a little bit. For small to 
midsized environments, Microsoft suggests that you check out a new technology built-in to 
Win2K AD. That technology is software deployment via the Group Policy mechanism. This 
mechanism is part of the Win2K feature set called IntelliMirror, whose goal it is to maintain 
system state from machine to machine as well as maintain overall system state health. 

The software deployment features are very cut and dry—that is, they work under a very specific 
set of circumstances. First, Group Policy software deployment is typically meant to work with 
MSI files, though .EXE files are supported under very limited circumstances. At this point, 
you’ve wrapped up your applications as MSI files, as we covered in Chapter 2. To use Group 
Policy to deploy these MSI files, you must have a Win2K AD domain (this environment is likely 
an uphill battle to achieve). In addition, Group Policy applies only to Win2K and Windows XP 
clients—so the clients to which you want to deploy software must be running Win2K or 
Windows XP. Again, this requirement might prove difficult in larger environments. However, if 
all these conditions are met, you can start to experiment with Win2K Group Policy software 
deployment. 

	 For an in-depth view of how to deploy each IntelliMirror feature, learn how Group Policy works (and 
how to troubleshoot it if it doesn’t), and additional helpful tips and tricks for software deployment with 
Group Policy, check out Windows 2000: Group Policy, Profiles, and IntelliMirror (Sybex). 

 
151



Chapter 6 

 

� In this section, we won’t explore every Group Policy option with regard to software deployment. For 
your beginning practice, you’ll want to start simply with a Win2K AD and a single Win2K Pro 
workstation. 

After you create a new Group Policy object (GPO), you can edit it. When you do, you’ll see that 
there are two software installation settings sections (as Figure 6.4 shows)—one for computer 
configuration and one for user configuration. 

 

Figure 6.4: You can deploy packages to either computers or users. 

At this point, you need to make a determination about how you want your software to be 
deployed. You can select to distribute a new Package, as Figure 6.5 illustrates. 

 

Figure 6.5: Choose either computer or users, and right-click to select New, Package. 

 
152



Chapter 6 

You’ll then be prompted for the star of the show—the MSI file that you created in the previous 
chapters. Figure 6.6 shows this window. 

 

Figure 6.6: Select your MSI file for deployment. 

For example, suppose you complete this set of tasks to deploy an MSI package to a user. In such 
a case, only the icon representing the software will make its way to the user’s desktop. The icon 
is representative of a component that triggers the installation of its parent feature. A single 
feature can contain any number of advertised shortcuts. Once the user selects that icon, the 
required components to support that feature are installed in a just-in-time fashion. This 
installation usually incurs some delay from when the client clicks the desired icon and the 
application starts. However, this delay is only present for the first installation of the software; 
subsequent clicks of the icon result in quick loading the installed version of the software from the 
hard drive. 

If you deploy your MSI package through the computer option (rather than user) all features in the 
MSI are loaded, and they appear loaded for each user who uses the computer. This method gives 
whoever is using the machine no options about which components are to be installed. 

Group Policy software deployment has the following cons: 

• Requires Win2K AD 

• Requires Win2K or Windows XP clients 

• Can be difficult to manage with a large user population as a result of a complex OU 
structure 

• No choice in which components are potentially available 

 
153



Chapter 6 

 
154

Group Policy software deployment does have its share of pros: 

• Software can be deployed to either users or computers via Group Policy in AD 

• Deployment is easy 

• Theoretically guarantees that a specific population of users (an AD OU, for example) has 
the same software 

MSI Deployment with Third-Party Tools 
Another option for deployment of your MSI packages is to use third-party tools. The following 
sections explore how you can use the assistance of your MSI repackaging tool to hand off your 
package to a third-party deployment mechanism. We’ll also discuss how to deploy packages 
even if you don’t have a third-party package-creation tool to assist you. 

Deploying with the Assistance of Third-Party Repackaging Tools 
In Chapter 2, you learned about the various tools you could use to create your MSI packages. In 
that chapter, we discussed several free or cheap options to get the job done; however, to get the 
job done with finesse, I suggested that you look into purchasing a third-party tool. Indeed, the 
initial cost of a third-party tool can be mitigated if you use enough of the features it has to offer. 

When we discussed the tools, we talked mostly about how tools wrap the packages into proper 
MSI files for future deployment. Some third-party MSI wrap-up tools have something special: 
the ability to deliver that MSI in a format that’s “ready” for a third-party deployment mechanism 
to pick up. In other words, the third-party MSI creation tool doesn’t directly have the ability to 
deliver the MSI it wraps up; rather it can pass the wrapped file directly to your company’s third-
party deployment choice. The goal is to have a seamless transition between the tool you use to 
create your MSI package and the tool you use to deploy your MSI. 

To accomplish this task, you can use any number of tools, including Wise Package Studio and 
InstallShield AdminStudio. InstallShield has partnered with Marimba to offer repackaging and 
deployment functionality. In this example, I’m using the Wise Package Studio to transition my 
package to any number of supported third-party tools. To do so, I’ll use the Package Distribution 
wizard, which Figure 6.7 shows. 



Chapter 6 

 

Figure 6.7: The Package Distribution wizard hands off the MSI to any number of distribution applications. 

Once launched, the Wise Package Studio automatically detects which third-party distribution 
programs you have installed. It then presents you with the ability to push to the various third-
party programs or select alternative methods to get the package out the door (see Figure 6.8). 

 

Figure 6.8: Popular distribution systems and other deployment options are presented with this MSI 
repackaging tool. 

 
155



Chapter 6 

For example, selecting Novell ZENworks brings up the ability to easily migrate the package to 
that distribution method. This feature supports all the normal Novell features, such as Tree Name 
and Context, as Figure 6.9 shows. 

 

Figure 6.9: One possible way to distribute your package is through a third-party tool such as ZENworks. 

Other hand-off functions are similar in that they target the specific third-party tool with exactly 
what’s required. Each hand off is a bit different, so be sure to test each option if you have 
multiple third-party distribution methods in conjunction with an MSI repackaging tool such as 
this. 

Third-Party Distribution Methods 
You might not have a third-party MSI creation tool to assist you in handing off to your third-
party distribution method. For instance, you might have used one of the free MSI creation 
tools—such as WinINSTALL LE or the SMS Installer—that don’t offer the ability to hand off 
the resulting MSI file to any distribution mechanism. In either case, you need to learn about how 
to deploy your MSI file. This section examines several third-party distribution methods for 
deploying MSI files. 

As I talk about third-party tools, my goal is educate you about some of the possibilities available 
to your for deploying MSI files. The programs we’ll explore offer myriad functionality—
software inventory, software metering, remote control, and even OS deployment features! 
However, I’ll stick to discussing the MSI-centric features of these solutions.  

Each tool takes a slightly different angle toward how they handle MSI file deployment and 
management. Hopefully, one of the tools I discuss will give you ideas about how to best deploy 
MSI packages in your organization. 
 

156



Chapter 6 

 
157

	 I simply don’t have enough space to cover each tool that can deliver MSI files. However, you can find 
a list of deployment (and repackaging) tools at http://appdeploy.com/tools. 

Microsoft SMS and MSI Deployment 
SMS is Microsoft’s offering to deploy any and all files to your Windows desktop. SMS is robust 
in many ways, including the ability to deploy files to any 32-bit Windows desktop. I’ve 
categorized it as a third-party MSI distribution solution because it is an add-on product (you 
cannot do most of what SMS does “right out the box” with just Win2K). 

A little background about SMS: Out of the box, SMS 2.0 wasn’t originally intended to deploy 
MSI files. Rather, it was mostly meant to deploy .EXE files. Indeed, for years, the SMS 
repackaging tool (the SMS Installer tool) didn’t create MSI files, it only created .EXE files. Only 
recently, as we explored in Chapter 2, did the SMS Installer repackaging tool offer MSI file 
creation functionality. 

0 As mentioned in Chapter 2, not every MSI function works correctly when creating MSI files using the 
SMS Installer tool. Therefore, you might want to consider using a full-featured third-party repackaging 
tool to create your MSI files. Then you can use the information here to continue to deploy that 
repackaged MSI file using SMS.  

Deploying MSI files with SMS is somewhat different than deploying .EXE files with the tool. 
You need to prepare a little before doing wholesale deployment of your MSI files with SMS. 
First, you need to deploy the latest Windows Installer bits to your PCs, which can be a 
monumental task. Like an MSI, you must deploy Windows Installer as an .EXE deployment. 

	 Get the bits you need for Windows 9x and NT 4.0 at 
http://www.microsoft.com/msdownload/platformsdk/instmsi.htm. The bits for Win2K and Windows XP 
are already installed, but you can update them if you want. Check out Chapter 1 for a refresher of 
which versions of Windows Installer are available. 

When it comes to actually deploying your MSI files, you’ve got a little more work to do. First, 
you need to set up a share point with read access to everyone. Next, you need to perform an 
Administrative Installation of your MSI file into that share. Recall from Chapter 2, that an 
Administrative Installation unpacks the guts of the MSI file and dumps the necessary contents to 
a directory. 

) Recall that you can run an Administrative Installation using MSIEXEC /a such as 

  MSIEXEC /a myfile.msi 

In the example that Figure 6.10 shows, I’ve performed an administrative install in the directory 
called e:\csav_distry, and created a new package pointing at the distribution source. 

http://appdeploy.com/tools
http://www.microsoft.com/msdownload/platformsdk/instmsi.htm


Chapter 6 

 

Figure 6.10: After creating your Administrative Install, you’re ready to deploy MSI packages with SMS. 

Once the files are in the directory and the SMS package is defined, you can continue to leverage 
your knowledge of the MSIEXEC syntax to deploy the packages to your SMS clients. You’ll 
create a new program, as Figure 6.10 shows. Recall that to perform an installation of a particular 
MSI file, you use the msiexec /i <filename.msi> syntax (you must also specify a transform 
and/or command-line switch to automate the installation). This syntax is the same syntax that 
you pump into an SMS program to perform the installation, as Figure 6.11 illustrates. 

� In SMS, a “program” is defined as the command line used to kick off a package. 

 
158



Chapter 6 

 

Figure 6.11: Use the MSIEXEC command line to assist with your deployment using SMS. 

There are many additional options at your disposal for configuring how to run an MSI file at an 
SMS client. For example, if you supply an /M switch, you can generate a status MIF file, which 
SMS will pick up and inventory to let you know what happened during the install. Using the 
information you already know about MSIEXEC and Windows Installer, it’s a lot easier to 
perform the task. 

) You might want to check out Microsoft’s additional notes about deploying MSI files when using SMS 
and Windows Installer at 
http://www.microsoft.com/smserver/techinfo/deployment/20/deployosapps/deploymsi.asp.  

 
159

http://www.microsoft.com/smserver/techinfo/deployment/20/deployosapps/deploymsi.asp


Chapter 6 

MSI Deployment and Management with Altiris Client Management Suite 
Altiris’ Client Management Suite is another third-party method to distribute and manage your 
MSI files. The Client Management Suite has many layers; we’ll focus our attention on its MSI 
hot spots. Three parts of the Client Management Suite deal with MSI files: 

• The deployment solution can send out an entire OS image. Once the image is deployed 
and finished, the deployment solution can pull an MSI package and install it before the 
user logs on for the first time. 

• The software delivery solution is the suite’s main software delivery mechanism. It’s 
similar to SMS in functionality and terminology. For instance, to deploy MSI files, you 
use the MSIEXEC command when you set up your packages and programs. 

• The application management solution lets administrators scan machines to determine the 
health of their distributed packages (either distributed via Altiris or some other 
distribution mechanism). This process can perform a scan of the machine, then report 
about the general MSI health of the system, as Figure 6.12 shows. 

� Altiris also offers an MSI/EXE repackaging tool similar to the SMS Installer that creates both .EXEs 
and MSI files. This tool is called Rapid Install, and similar to earlier versions of the SMS Installer, it 
requires an external .EXE to .MSI conversion utility.  

 

Figure 6.12: Altiris’ suite can help manage and fix MSI files once you deploy them. 

 
160



Chapter 6 

If the deployment of one package has broken another package, the Windows Installer might not 
know about this mishap and won’t fix it until the original program is launched. The suite’s 
application management solution can scan the system and learn which MSI packages are 
currently installed on the machine. It can then run through all the MSI interdependencies and 
links to determine what is broken. Finally, it can trigger the Windows Installer service to perform 
an automatic repair. Either quick or full scans can be chosen, as Figure 6.13 shows. A quick scan 
examines the MSI’s key path and attempts a fix. A full scan tracks down all associated 
components and DLLs of an MSI and attempts to ensure that every bit is back in order. 

 

Figure 6.13: The suite’s repair option allows for “Quick” or “Full” MSI scans. 

Also available is the ability to create a baseline of a known good local machine, then do 
comparisons against a broken machine. You can compare which MSI components are registered 
in the registry. Simply find the broken component, and you’re off to the troubleshooting races. 

Altiris also provides several reports that can help explain how packages are interacting with the 
Windows Installer service on each client system, as Figure 6.14 illustrates. For instance, you can 
get a quick view of Most frequently broken products or All repair attempts in the last N days. 

 
161



Chapter 6 

 

Figure 6.14: Altiris has facilities to run reports about the status of the Windows Installer service. 

Altiris’ suite continues with a rigorous MSI inventory. For instance, it can obtain a list of all MSI 
features not installed. For example, perhaps when a user loaded an MSI file, the user chose not to 
install a particular feature—say, the Help file. Altiris can examine which machines are missing 
the MSI feature, then simply send a new job to the client computers to pull the feature from the 
source to ensure that all clients are the same. 

MSI Deployment and Management with ON Technology’s ON Command CCM 
Another third-party technology that has the ability to push MSI files is ON Technology’s ON 
Command CCM (change and configuration management). This product provides unique MSI 
deployment functionality. For instance, CCM has the unique ability to bypass the entire 
requirement for an Administrative Installation and lets you distribute complex MSI packages 
directly from the source. 

For example, in the windows that Figure 6.15 shows, I’m telling CCM to deploy Microsoft 
Office XP with FrontPage. The MSI file is called PROPLUS.MSI (in this example, I’m grabbing 
it directly off the CD-ROM).  

 
162



Chapter 6 

 

Figure 6.15: CCM allows for you to bypass the administrative installation step. 

CCM goes one step further: It has the ability to add a transform file you create right into the 
definition as well as essentially create customized transforms on the fly! If you do not choose an 
MST file, CCM will crack open the MSI file and locate the changeable variables. Instead of 
going through the lengthy customized MST creation process for your application (or by using a 
third-party MST creation tool), you can bypass it all and use CCM (see Figure 6.16). 

 
163



Chapter 6 

 

Figure 6.16: You can tap directly into an MSI’s properties and change them on the fly. 

In my example, I’ve changed the value of Office’s ARPHELPLINK, which defines the location 
of online Help. Usually, it has a link to Microsoft. However, using CCM, I’m changing the 
location to my own company’s internal support Web site. 

When it comes time to target the package to your client systems, CCM has an additional notable 
feature. That is, it allows you to target the machines you want, and, in spreadsheet fashion, 
simply select which systems will get which MSI features once they hit the target machines. As 
Figure 6.17 illustrates, each of these three systems (gx150x, nx1, and MINI) will have the Office 
XP features in one of the MSI potential installation states. 

 
164



Chapter 6 

 

Figure 6.17: You can specify which computers get which options on the fly in spreadsheet form. 

MSI Deployment with ONDemand Software’s WinINSTALL 
Another product that can help deploy your MSI packages is ONDemand Software’s 
WinINSTALL (formerly owned by VERITAS). As we saw in Chapter 2, WinINSTALL has a 
companion product called WinINSTALL LE that can help create MSI packages, which you can 
then deploy via any distribution mechanism you desire—not just through WinINSTALL. Like its 
companion product, WinINSTALL has gone through a long history of ownership. It was 
developed by ONDemand Software, then Seagate bought WinINSTALL and WinINSTALL LE, 
then VERITAS bought Seagate. Because VERITAS wanted to focus more on backup and 
recovery, WinINSTALL and WinINSTALL LE were sold back to a newly reformed ONDemand 
Software—and the products are back in development. WinINSTALL’s strength with MSI 
packages is that you are able to view and manipulate all the features and components of an MSI 
package that you create, as Figure 6.18 shows. 

 
165



Chapter 6 

 

Figure 6.18: WinINSTALL displays all features and components of each deployable MSI file. 

Once an MSI file is loaded into the WinINSTALL Console, you can see each of the features 
(represented in Figure 6.18 with the little DNA-type icon) and each component (represented with 
a green dot). In addition, at the feature level, you can easily make the initial determination 
whether a feature should be installed on first use, loaded and run from the hard drive, or an 
alternative option (see Figure 6.19). 

 
166



Chapter 6 

 

Figure 6.19: You can easily control the MSI installation state. 

You can even dive in and take it a step further by determining which features and components 
are going to be installed in what manner. For instance, you might only decide to install the 
component related to the Help file (for example, to save space or eliminate confusion) of an 
application if the ProductLanguage was English and if the machine was at SP1 or higher. By 
drilling into the component and specifying the criteria you want to match, you can determine 
which components will be installed (see Figure 6.20). 

 
167



Chapter 6 

 

Figure 6.20: You can control how each feature and component is installed. 

In addition, WinINSTALL can do a compression upon your MSI file based on the features you 
chose to install, as Figure 6.21 shows. That way, you’re only sending the necessary data to the 
clients that need it; not the entire package. 

 

Figure 6.21: You can compress your MSI file before shipping it off to destination servers. 

 
168



Chapter 6 

MSI Deployment with Mobile Automation 2000 
Mobile Automation 2000’s claim to fame is that it was the first kid on the block to perform a 
“trickle down” deployment, through which users on slow links can download a package to install 
in “drips and drabs,” then once fully downloaded, the job kicks off and runs. Imagine trying to 
download, say, Office XP over a 56k modem in one fell swoop, and you can understand how this 
feature might come in handy. Mobile Automation 2000 also has the ability to send software to all 
sorts of Microsoft and non-Microsoft devices, such as Windows CE, Palm, and Blackberry, in 
addition to standard Windows-based PCs. Mobile Automation 2000 builds upon its history and is 
now a robust MSI package deployment mechanism. 

Mobile Automation 2000 allows for a full script of any sort of install—including MSI files. In 
the example that Figure 6.22 shows, the Execute MSI Package command is pulled off the 
Command List as a possible first command to start an MSI deployment. 

 

Figure 6.22: Mobile Automation 2000 allows for pre and post scripting during an MSI installation. 

Note that the Use MsiExec.exe check box is clear by default. The reason is that Mobile 
Automation 2000 has the unique ability to install packages in two ways. When the check box is 
selected, Mobile Automation 2000 will use MSIEXEC to install the application. With the check 
box clear, Mobile Automation will use the direct Windows Installer APIs to perform the 
installation. 

Mobile Automation 2000 also has the ability to grab the state of certain attributes of the package, 
such as if the package requires a reboot. In the example that Figure 6.23 shows, if the package 
requires a reboot, you could make some additional changes before actually going forth and 
performing that reboot. Doing so could save time during each and every deployment. Imagine 
how much time you could save if you could squelch every MSI reboot until absolutely necessary, 
perform the changes you wanted (which could also require a reboot), then reboot just once when 
you’re ready. 

 
169



Chapter 6 

 

Figure 6.23: You can inspect the state of several MSI variables, such as whether a reboot is needed. 

Finally, because Mobile Automation 2000 has the ability to use the direct Windows Installer API 
calls (instead of just calling MsiExec.exe) to install the package, there is a huge jump in the level 
of detail provided about precisely what happens during the install time of a package. Every 
possible status code result is directly returned from the API function call and handled as a branch 
condition, as Figure 6.24 shows. (The API error code list is quite long and only a fraction can be 
seen in the drop-down box in the figure.) 

 

 
170

Figure 6.24: Mobile Automation 2000 can branch on the precise error returned from the Windows Installer 
API function for installation. 



Chapter 6 

Once you know the error code, you can conditionally branch to handle specific conditions or 
simply make note of the error in a log file to help with MSI deployment troubleshooting. In the 
example that Figure 6.25 shows, I’m adding a warning flag to my Mobile Automation 2000 log 
file if the error condition known as <msiresult> is anything other than “success (0).” 

 

Figure 6.25: You can customize the error logs to demonstrate specifically what went wrong with an MSI 
installation. 

Additionally, Mobile Automation 2000’s inventory function can grab MSI data directly from the 
desktop—such as how often certain MSI packages are being used (see Figure 6.26). Finally, 
when the package is ready for uninstall, it can be uninstalled with a proper MSIEXEC uninstall 
string. 

 
171



Chapter 6 

 

Figure 6.26: You can find out how popular the packages you deployed are by inspecting the usage statistics. 

Summary 
In this chapter, you learned about the free, the cheap, and the third-party ways to get your MSI 
files out the door and onto your users’ plates. If you have a small environment, it’s possible you 
can get away with Sneakernet or batch files. Midsized environments could make decent use of 
Win2K’s Group Policy deployment features. However, the largest environments will likely need 
an industrial-strength solution to get those MSI files out the door and fully managed day to day. 

Windows Installer technology has been out and about for several years now, and much has been 
written about it. Administrators leverage Windows Installer from a unique perspective, and they 
need resources that directly address their IT management concerns with sensitivity to their 
learning styles. To that end, we’ve tried to address Windows Installer technology management 
issues with practical tips and techniques you can apply immediately to your packaging efforts. 

It is our hope that this book will be such a valuable resource that it will become very “virtually” 
worn and tattered as you reference it again and again. 

 
172



Chapter 6 

 
173

Content Central 
Content Central is your complete source for IT learning. Whether you need the most current 
information for managing your Windows enterprise, implementing security measures on your 
network, learning about new development tools for Windows and Linux, or deploying new 
enterprise software solutions, Content Central offers the latest instruction on the topics that are 
most important to the IT professional. Browse our extensive collection of eBooks and video 
guides and start building your own personal IT library today! 

Download Additional eBooks! 
If you found this eBook to be informative, then please visit Content Central and download other 
eBooks on this topic. If you are not already a registered user of Content Central, please take a 
moment to register in order to gain free access to other great IT eBooks and video guides. Please 
visit: http://www.realtimepublishers.com/contentcentral/. 

 

http://www.realtimepublishers.com/contentcentral/
http://www.realtimepublishers.com/contentcentral/
http://www.realtimepublishers.com/contentcentral/

	Introduction to Realtimepublishers
	Chapter 1: Meet Windows Installer: Introduction, Features, a
	Defining the Need for Windows Installer
	Saved Time and Effort Through Automated Installs
	Application and Operating System Stability
	The Benefits of Windows Installer and MSI
	Your First Windows Installer Encounter

	Windows Installer Version Numbers
	What Is Your Windows Installer Version Number?
	The Internals of Version Numbers
	Windows Installer Version 2.0

	Windows’ Relationship to Windows Installer
	Windows Installer on Downlevel Clients

	MSI File Foundations
	Setup or MSI?

	Base Installations, Transforms, and Patches
	Base Installations
	Transforms
	Vendor-Supplied Transform-Generation Tools
	Third-Party Transform-Generation Tools
	Executing MSIs with Transforms

	Patches

	Roadmap for the Rest of the Text
	Chapter 2: MSI Tools Roundup
	Basics of the Repackaging Approach
	Microsoft’s Offerings
	WinInstall LE
	WinInstall LE Operation

	SMS Installer
	The SMS Installer Repackage Installation Wizard Tool
	The SMS Installer Watch Tool
	The SMS Installer Script Editor
	Creating MSI Files with the SMS Installer


	Commercial Third-Party MSI Tools
	Commercial Third-Party Tools at a Glance
	Wise Package Studio
	AdminStudio 3.5
	Prism Pack
	Added Functionality
	Wise Package Studio 4.0 Repackaging Innovations
	AdminStudio 3.5 Repackaging Innovations


	Shareware and Freeware Third-Party Tools
	Summary
	Chapter 3: Windows Installer Internals
	Application Management Meta Data
	MSI File Format
	Three Streams
	The Database
	“Open” File Format

	How Packages Describe Software Applications and Installation
	Software Application Information
	Identification in Windows Installer

	Component Structure and Attributes
	Component Name
	Component Codes
	Keypaths
	Entry Points and Advertisements
	Typical Components

	Features
	Package Execution Information
	Standard Actions
	Custom Actions
	Sequences
	Properties
	Notable Properties

	Self-Healing Overview
	Summary of Package Structure Concepts
	Customizing Packages
	Managed Application Settings
	Creating Transforms for Application Settings
	Using Transforms
	Administrative Installs
	Building and Using Administrative Installs
	Installing from an Administrative Share
	Serving Applications


	Security and Policies
	Windows Installer Policies
	Elevated Privileges Implementation
	Managed Applications
	Always Install with Elevated Privileges (AlwaysInstallElevat
	AlwaysInstallElevated Hacking
	Disable Windows Installer (DisableMSI) Policy
	Cache Transforms in Secure Location on Workstation (Transfor

	Other Security-Oriented Policies
	Non-Security Policies
	Excess Recovery Options
	Logging Policy

	Software Restriction Policies
	Certificate Rules
	Hash Rules
	Path Rules
	Zone Rules
	Combining Rules


	Summary
	Chapter 4: Best Practices for Building Packages
	Best Practices Formulation
	Best Practice Is Not Optional
	Darwin’s Law of Technology Sophistication

	Repackaging Best Practice Recommendations
	Do Not Repackage All Types of Setup Programs
	Have a Documented Desktop Reference Configuration
	Use Clean System Reloads for Testing and Packaging
	Why Clean Machines?

	Additional Management Data for Packaging

	Windows Installer Best Practices
	Invest in Training
	Invest in Good Tools
	Basic Packaging Functionality
	Advanced Functionality
	Peripheral Features
	Administrator vs. Developer Tools

	Manage Your Windows Installer Engine Version
	Know How Windows Installer Interacts with Other Technologies
	Configure Policies and Security
	Ensure Source List Management
	Repackage Existing Packages Rather than Convert Them
	Use VBScript for Custom Actions and Other MSI Scripting
	Run Package Validation
	Perform a Dry Run with Verbose Logging
	Utilize Windows Installer’s Logging Capabilities

	Formulating Your Own Processes
	Windows Installer SDK Assumptions
	Package Classifications
	Package Structure Rules for Administrators
	Component Rules—The Protocols for Sharing

	Scope of Distribution
	Code Management Components
	Duplicate Component Definitions
	Conflicting Component Definitions
	Compounded Problems


	Upgrade Packages
	Upgrade Processes
	Package Attributes
	Update Types
	Minor Upgrade
	Small Update (Admins Need Not Apply)
	Major Upgrade
	Simplifying Upgrades

	Patch Packages
	Generating Patches
	Patching Reality Checks

	Conflict Management for Package Structure
	A Word About Merge Modules
	Merge Modules in the Administrator’s World
	Merge Modules as a Poor Man’s Conflict Management Tool
	Replacing Repackaged Files with Merge Modules
	Administrator and In-House Developer Generated Merge Modules


	Summary
	Chapter 5: Windows Installer with or without Active Director
	Beware the Tide of Windows Installer
	Services Provided by Win2K Technologies
	IntelliMirror Repository Technologies Overview
	IntelliMirror Deployment Technologies Overview

	Source Lists—the Good and the Bad
	Trickle Services, CD-ROM Distribution, and Source Lists
	Fixing Existing Unmanaged Sources

	Designing the Package Distribution Repository
	When to Choose Something Other than DFS
	DFS Functionality Alternatives
	Managed Drive Letters and Managed Environment Variables
	Package Source List Management

	When to Choose Something Other than FRS
	FRS Alternatives
	Directory Structure Issues
	Directory Structure Considerations
	Administrative Installs
	Repository Availability Service Level Agreement

	Package Deployment Technology Planning
	IntelliMirror Fine Print
	When to Consider Alternatives to IntelliMirror Deployment

	Summary
	Chapter 6: MSI Deployment Roundup
	MSI Deployment for Free
	Sneakernet
	Batch File Installation

	Microsoft MSI Deployment with Group Policy
	MSI Deployment with Third-Party Tools
	Deploying with the Assistance of Third-Party Repackaging Too
	Third-Party Distribution Methods
	Microsoft SMS and MSI Deployment

	MSI Deployment and Management with Altiris Client Management
	MSI Deployment and Management with ON Technology’s ON Comman
	MSI Deployment with ONDemand Software’s WinINSTALL
	MSI Deployment with Mobile Automation 2000

	Summary
	Content Central
	Download Additional eBooks!

