
The Administrator
Shortcut Guide Totm

The Administrator
Shortcut Guide Totm

VBScripting for
Windows

Don Jones

Introduction

i

Introduction to Realtimepublishers
by Don Jones, Series Editor

For several years, now, Realtime has produced dozens and dozens of high-quality books that just
happen to be delivered in electronic format—at no cost to you, the reader. We’ve made this
unique publishing model work through the generous support and cooperation of our sponsors,
who agree to bear each book’s production expenses for the benefit of our readers.

Although we’ve always offered our publications to you for free, don’t think for a moment that
quality is anything less than our top priority. My job is to make sure that our books are as good
as—and in most cases better than—any printed book that would cost you $40 or more. Our
electronic publishing model offers several advantages over printed books: You receive chapters
literally as fast as our authors produce them (hence the “realtime” aspect of our model), and we
can update chapters to reflect the latest changes in technology.

I want to point out that our books are by no means paid advertisements or white papers. We’re an
independent publishing company, and an important aspect of my job is to make sure that our
authors are free to voice their expertise and opinions without reservation or restriction. We
maintain complete editorial control of our publications, and I’m proud that we’ve produced so
many quality books over the past years.

I want to extend an invitation to visit us at http://nexus.realtimepublishers.com, especially if
you’ve received this publication from a friend or colleague. We have a wide variety of additional
books on a range of topics, and you’re sure to find something that’s of interest to you—and it
won’t cost you a thing. We hope you’ll continue to come to Realtime for your educational needs
far into the future.

Until then, enjoy.

Don Jones

http://nexus.realtimepublishers.com/

Table of Contents

ii

Introduction to Realtimepublishers..i

Chapter 1: Introduction to VBScript..1

What is VBScript? ...1

Functions and Statements ..3

Exploring Functions...3

Using Functions ...5

Fancy Variables ...6

Adding Logic ...7

Choosing from a List of Possibilities...8

Executing Code Again and Again and Again ..9

Declaring Variables Carefully ...11

Alternative Loops...12

Working with Objects ..13

The WScript Object ...14

File and Folder Objects..17

Your First Administrative Script ...21

Summary ..23

Chapter 2: Working with ADSI ...24

ADSI Without a Directory ...24

ADSI Providers..27

The WinNT Provider ...27

The LDAP Provider ...28

An ADSI Shortcut..30

Querying Global Catalog Servers ..32

Useful ADSI Scripts ..33

User Account Scripts ...33

Group Scripts ...35

Computer Account Scripts...36

Computer Management Scripts..37

Scripting Batch Operations ..39

Summary ..41

Chapter 3: Working with WMI..42

Classes and Queries ...42

Table of Contents

iii

Scripting and WMI ..46

There’s No One, Right Way ..48

Alternative Credentials ..49

Credential Security...51

What to Do With WMI ..51

WMI Scriptlets...54

Managing Services...54

Archive Security Logs ...57

Extended WMI...59

Summary ..61

Chapter 4: Advanced Scripting..62

Remote Scripting ...62

The WshController Object...63

WScript.ConnectObject ...64

Remote Scripting Limitations ..65

Database Scripting ...66

Making Data Connections..66

Querying and Displaying Data...68

Modifying Data..72

Windows Script Files...75

Signing Scripts ...77

Summary ..78

Copyright Statement

iv

Copyright Statement
© 2005 Realtimepublishers.com, Inc. All rights reserved. This site contains materials that
have been created, developed, or commissioned by, and published with the permission
of, Realtimepublishers.com, Inc. (the “Materials”) and this site and any such Materials are
protected by international copyright and trademark laws.

THE MATERIALS ARE PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
TITLE AND NON-INFRINGEMENT. The Materials are subject to change without notice
and do not represent a commitment on the part of Realtimepublishers.com, Inc or its web
site sponsors. In no event shall Realtimepublishers.com, Inc. or its web site sponsors be
held liable for technical or editorial errors or omissions contained in the Materials,
including without limitation, for any direct, indirect, incidental, special, exemplary or
consequential damages whatsoever resulting from the use of any information contained
in the Materials.

The Materials (including but not limited to the text, images, audio, and/or video) may not
be copied, reproduced, republished, uploaded, posted, transmitted, or distributed in any
way, in whole or in part, except that one copy may be downloaded for your personal, non-
commercial use on a single computer. In connection with such use, you may not modify
or obscure any copyright or other proprietary notice.

The Materials may contain trademarks, services marks and logos that are the property of
third parties. You are not permitted to use these trademarks, services marks or logos
without prior written consent of such third parties.

Realtimepublishers.com and the Realtimepublishers logo are registered in the US Patent
& Trademark Office. All other product or service names are the property of their
respective owners.

If you have any questions about these terms, or if you would like information about
licensing materials from Realtimepublishers.com, please contact us via e-mail at
info@realtimepublishers.com.

mailto:info@realtimepublishers.com

Chapter 1

1

Chapter 1: Introduction to VBScript

Have you ever run around to each computer on your network checking to see whether a
particular patch was installed? Have you spent hours creating new user accounts and Exchange
mailboxes for a batch of new users? Have you and a coworker walked around powering off client
computers at the end of the day? In addition to these mundane duties, you’ve probably performed
any number of tedious, time-consuming, repetitive tasks. Have you ever wondered if there was
an easier way?

Practically any Windows administration task can be automated. There are software developers
that spend their careers creating tools to automate Windows administration. Even Microsoft
provides Windows administration automation tools with command-line utilities such as
Cacls.exe, which helps automate the process of changing NTFS file permissions. But as a
Windows administrator, you probably think you don’t have time to sit around programming your
own automation tools. That’s where you’re wrong: VBScript offers a powerful, easy to
understand scripting language that is practically tailor-made for Windows administration.

This guide will provide the basics of VBScript. Rather than attempt to show you every nook and
cranny of VBScript—because you’re probably more interested in just getting the job done, this
guide will show you everything you need to know to get started with VBScript. In addition, there
will be plenty of sample scripts to give you a little jump start.

	 When you’re ready for more, check out http://www.ScriptingAnswers.com. You’ll find dozens more
sample scripts, tools and utilities, reviews of scripting-related products, tutorials, and tons more, all
free and all firmly focused on the life of a Windows administrator.

What is VBScript?
Simply put, VBScript is a programming language. It’s fairly easy to learn because its commands
are all common English words (well, most of them are common). Unlike languages such as C++
or JavaScript, VBScript isn’t case-sensitive, and you don’t have to use much in the way of
special formatting in your scripts. These qualities make VBScript pretty forgiving of new (or just
lazy) programmers, and it makes the language a bit easier and more enjoyable to learn. The
following example shows a simple VBScript program:

Dim sMyName

sMyName = InputBox(“Type your name”)

MsgBox “Hello, “ & sMyName

Let’s take a moment to examine this simple script. First, the script tells VBScript that you plan to
use a variable named sMyName. A variable is exactly what you remember from high school
algebra: it’s a name that holds a changing value. At the beginning of the script, sMyName
doesn’t contain any value; you’re simply announcing to VBScript that you plan to use the
variable.

http://www.scriptinganswers.com/

Chapter 1

2

Next, the script assigns a value to sMyName. You can see that a value is being assigned because
sMyName is on the left side of an equal sign (=). In algebra, writing something like x = 5
assigned the value 5 to the variable x; VBScript works the same way. In this case, however, the
script is not assigning a literal value like 5; instead, the script is assigning the result of a function.
The function in this example is InputBox(). This function displays a dialog box in which the user
can type something. The message in the dialog box is “Type your name.” What the user inputs
will be placed into the variable sMyName.

Next, the script uses a statement called MsgBox. This function displays a message box, or dialog
box, containing “Hello” and whatever value is stored in sMyName. Thus, if you had typed “Joe”
into the InputBox, the message box would display “Hello, Joe.”

To try scripting this simple example on your own, right-click on your desktop, and select New,
Text document. Rename the new document to Test.vbs; when Windows warns you that you’re
changing the filename extension, click Yes to tell Windows that you know what you’re doing
and to go ahead and change the extension. Open Notepad.exe, drag Test.vbs into Notepad, type
the three lines of code that the example shows, and save the file. Finally, double-click Test.vbs to
execute the program.

You’ve just written your first script! If you can’t get this script to run on your system, scripting
might be disabled on your system or Windows might be configured not to show filename
extensions. To solve these problems, enable scripting and try downloading and installing the
Windows Script Host (WSH), version 5.6, from http://www.microsoft.com/scripting.

� WSH is the software that actually executes your scripts.

Once you’ve have the script working, you’re an official scripter. Believe it or not, you’ve already
learned about several of VBScript’s most important concepts:

• Variables—Variable are names that hold a changing value. That value can be a string of
characters (such as a name), a date or time, a number, a true/false value (called a
Boolean), and so forth. VBScript is flexible, you can use string, numeric, or whatever-
type value in a variable.

• Operators—The equal sign in the example script is an assignment operator. As I already
explained, it’s responsible for placing the output of InputBox() into sMyName. Other
operators perform mathematical operations:

• + handles addition

• - for subtraction

• * handles multiplication

• / denotes division

VBScript provides many additional math functions, but you’re not likely to need the
cosine or tangent of some number in your Windows administrative tasks; thus, you can
probably ignore all but the basic four math operators.

http://www.microsoft.com/scripting

Chapter 1

3

• Functions—I’ll spend more time on functions in the next section, but you’ve already
seen how functions work. They can (but don’t always) accept an input value (in this case,
it was the prompt to “Type your name”). They always return some value, which in this
case, is whatever the user inputs. The function’s input parameters are enclosed in
parentheses, and the function’s output is often assigned to a variable or used as the input
parameter to another function.

• Statements—The last line of the example script is a statement. Notice that, like a
function, it accepts a parameter. However, a statement doesn’t enclose that parameter in
parentheses. The reason is that the statement, unlike the function, doesn’t return any
value; it simply does something, which, in this case, is to display a message box.

Most scripts are this simple. Sure, they might be longer, but they’re not logically more complex
than this simple example.

Functions and Statements
You’ve already been introduced to one function, InputBox(), so you’re ready to start exploring
the VBScript documentation. To do so, point Microsoft Internet Explorer (IE) to
http://msdn2.microsoft.com/en-us/library/d1wf56tt.aspx.

� I specified Internet Explorer specifically rather than generically referred to any Web browser. The
reason is that the documentation site works better with IE.

Click VBScript Language Reference, click Functions, and click InputBox. The official VBScript
documentation says that the syntax of the InputBox function is:

InputBox(prompt[, title][, default][, xpos][, ypos]
 [, helpfile, context])

What this information means is that the InputBox() function can accept as many as seven
parameters. All but the first is enclosed in square brackets, which means they’re optional. The
first parameter, prompt, is a string that is displayed in the InputBox. You can specify additional
parameters to give the InputBox a title or to provide a default input value for users who are too
lazy to type. If you don’t want the InputBox centered, you can specify a starting position using X
and Y coordinates. If you’ve written a help file for your script, you can specify the help file and
the InputBox’s context link ID number (that is the ID number that tells Windows which help file
topic to load if someone presses F1 while the InputBox is displayed).

These parameters must always fall in this order. You can’t skip any. For example, if you want to
use the prompt and default parameters, but don’t care about title, you would use a script similar
to the following example:

sMyName = InputBox(“Type your name”, , “Joe”)

Between the two commas is the title parameter. Although the title has been left out, you must
include the comma after the title parameter so that VBScript realizes “Joe” is the third parameter.

Exploring Functions
If you’re on the InputBox function page and you click the Back button in your browser, you’ll be
confronted with an alphabetical list of every function VBScript knows about. As an

http://msdn2.microsoft.com/en-us/library/d1wf56tt.aspx

Chapter 1

4

administrator, you will probably use only ten percent of these functions. The following list
highlights functions that you will most likely use often:

• CDate()—Converts a value into a date

• CInt()—Converts a value into an integer

• CStr()—Converts a value into a string

• Date()—Returns the current system date

• DateAdd()—Adds and subtracts dates

• DateDiff()—Provides the difference (in days, weeks, or a specified metric) between two
dates

• DatePart()—Returns a part of a date (for example, the year, day, month, and so on)

• GetObject()—Returns a reference to an automation object.

	 We’ll explore GetObject in detail later in this chapter.

• InputBox()—As we’ve examined, displays a dialog box in which the user can type
something

• InStr()—Tells you where one string (such as ar) can be found in another string (such as
Mars; the answer is 2 because ar occurs at the second character of Mars)

• LCase()—Converts a string to lowercase

• Left()—Grabs the leftmost specified number of characters of a string

• Len()—Tells you the length of a strings

• MsgBox()—Is a function and a statement; as a function, it displays different buttons
(such as Yes and No) and determines which button the user selected

• Now()—The current system date and time

• Replace()—Similar to InStr(), except Replace() locates any occurrence of one string
within a second string and replaces those occurrences with a third string

• Right()—Returns the rightmost specified number of characters of a string

• Split()—Takes a delimited list (such as “one,two,three”) and breaks it into an array of the
list values

• Time()—Returns the current system time

• UCase()—Converts a string to uppercase

You’ll find other functions to be useful later in your scripting career, but these twenty functions
will be useful as you begin scripting.

Chapter 1

5

) When you’re trying to figure out how to do something in VBScript, browse the function list to see if
anything looks likely. For example, if you need to write a script that converts user input to uppercase,
you might browse the function list for something that starts with “upper” or “U.” The first function under
“U” is UBound(), which doesn’t sound likely as a solution; the second function is UCase(), which
sounds like it might be a winner. In addition, browsing can be a great way to find out more about the
language.

Using Functions
So how do you use a function? Well, you’ve already seen InputBox() in action. Let’s start with
this function and create a script that also includes as many other common functions as possible
(see Listing 1.1).
Dim sVar
sVar = InputBox(“Go ahead, type something.”,”Test”,”Something”)

MsgBox “The first letter is “ & Left(sVar, 1)
MsgBox “and the last letter is “ & Right(sVar, 1)
MsgBox “In uppercase it’s “ & UCase(sVar)
MsgBox “Today is “ & Date()
MsgBox “Right now it is “ & Now()
MsgBox “The second character is “ & Right(Left(sVar,2),1)

Listing 1.1: An example script that uses many common functions.

Notice that the script that Listing 1.1 shows uses the ampersand (&) character. This character
appends, or concatenates, two strings so that they appear to be one string.

Also look at the last line of code in which the script uses two functions together. The way to read
these is to start with the inside-most function: Left(sVar,2), which will return the leftmost two
characters of whatever is in sVar. Next is Right(Left(sVar,2), 1); the outer function will return
the rightmost one character of whatever the inner function output. Thus, if you start with the
leftmost two characters, then take the rightmost one character, you end up with the second
character in the string.

This example illustrates that functions can be nested within one another; however, it provides a
difficult and roundabout way to reach the second character in the string. You could achieve the
same result with the following code:

MsgBox “The second character is “ & Mid(sVar, 2, 1)

This script will take sVar, start at the second character, and return a string of one character.

	 For more information about Mid(), look it up in the VBScript documentation.

Chapter 1

6

Fancy Variables
The last section briefly mentioned arrays (there was a quick reference to the Split() function). An
array is basically a list contained within a single variable; arrays are used in several
administrative scripting situations. For example, consider the following script:

Dim sVar

sVar = “Hello”

sVar is not an array. It contains a single value, “Hello.” Consider the next script:
Dim sVar

sVar = Split(“One,Two,Three”, “,”)

sVar is now an array, containing three values: “One” is the first value, “Two” is the second, and
“Three” is the third. The Split() function removed the commas when it split the list, using those
commas as delimiters. The second parameter in Split() tells the script to use a comma—rather
than some other character—as the delimiter for the list. To access the elements in an array, you
use a script similar to the following:

MsgBox sVar(0)

MsgBox sVar(1)

MsgBox sVar(2)

Notice that the array starts numbering at zero, not one; thus, an array with three elements will
have indexes ranging from zero to two. There are functions to tell you the index number of the
array’s last element—MsgBox UBound(sVar) would return “2” in this example.

You can make your own arrays, put data into individual elements, and so forth. You can also use
multi-dimensional arrays, such as the following example:

Dim MyArray(5,1)

MyArray(0,0) = “Hello”

MyArray(0,1) = “There”

Think of a two-dimensional array like this example as a kind of ersatz Excel spreadsheet. The
first dimension (with elements ranging from zero to five) is the spreadsheet’s rows; the second
(zero and one) are columns. You can have three-dimensional arrays, four-dimensional, and so
forth.

Chapter 1

7

Adding Logic
Once you’ve mastered variables and functions, you can begin enabling your scripts to think for
themselves. For example, I mentioned earlier how you can use MsgBox as a function to ask
yes/no questions. How would you program your script to handle a yes or a no individually? As
the following script show, you use logic:

iResponse = MsgBox(“Continue?”, 4)

If iResponse = 6 Then

 MsgBox “Here we go!”

Else

 MsgBox “Aw, too bad.”

End If

Notice the second parameter, which is the number 4. The VBScript documentation informs you
that this is the correct number for a message box with Yes and No buttons.

) Did you catch how the second parameter of MsgBox() isn’t included in quotation marks? VBScript
uses double quotes to identify strings of characters; anything you want treated as a number doesn’t
need quotes.

Next comes an If…Then construct that has three parts:

• If—Some comparison is offered, in this case iResponse = 6. If iResponse does, in fact,
equal six, the next line of code will be executed. Why six? The VBScript documentation
for MsgBox() tells you that MsgBox() will return a 6 if the user clicks the Yes button. If
the user clicks No, the result is a seven.

• Else—What if iResponse doesn’t equal six? No problem, VBScript will start looking for
other options, which is given in the Else portion of the construct. If the user clicks No, the
lines of code following Else will execute.

• End If—When the user has made a selection and the script has executed the appropriate
code, VBScript looks for the End If line.

Let’s walk through the logic. If the user clicks Yes, you get a 6 back. VBScript will display
“Here we go!” in a message box. The next line of code is Else; VBScript doesn’t need an else
because the original condition was true, so VBScript goes looking for End If.

If the user clicks No, you get back a 7. VBScript starts looking for other options. An ElseIf,
which we haven’t yet explored, an End If, or an Else. The first option that the script runs across
is Else, so the script executes that code and displays the related message. What if you have more
than a simple yes/no decision? Listing 1.2 provides an example for this type of scenario.

Chapter 1

8

iResponse = MsgBox(“What do you want to do?”, 2)
If iResponse = 3 Then
 MsgBox “Abort!”
ElseIf iResponse = 4 Then
 MsgBox “Retry!”
ElseIf iResponse = 5 Then
 MsgBox “Ignore!”
Else
 MsgBox “What did you click?”
End If

Listing 1.2: Example script that illustrates more than a yes/no decision.

In Listing 1.2, the 2 in the MsgBox() function forces an Abort, Retry, and Ignore button to be
displayed. According to the documentation, clicking those buttons will yield a value of 3, 4, or 5,
respectively.

If the user clicks Abort, you get a 3, so the If evaluates to true and the first MsgBox is displayed.
If not, VBScript looks for alternatives; it will first run across an ElseIf. If that evaluates to true,
the second MsgBox is displayed. If not, the next ElseIf is examined; if it is not true either (I’m
not sure how that could happen with only three buttons to choose from, but let’s imagine),
VBScript goes with the final option: Else.

Choosing from a List of Possibilities
There is a slightly easier way to work with a large list of possible choices, called Select…Case.
Listing 1.3 shows an alternative to the previous script.
iResponse = MsgBox(“What do you want to do?”, 2)
Select Case iResponse
 Case 3
 MsgBox “Abort!”
 Case 4
 MsgBox “Retry!”
 Case 5
 MsgBox “Ignore!”
 Case Else
 MsgBox “What did you click?”
End Select

Listing 1.3: Another example script that handles a list of possibilities.

In the script that Listing 1.3 shows, the Select statement tells VBScript which variable we will be
examining, and each Case statement provides a different possible value for that variable. If the
variable doesn’t contain any of the listed cases, then Case Else provides a final alternative.

) Notice how the lines of code are indented a bit within each construct? This technique makes it easier
to keep track of which code is inside a construct, and to make sure you properly end each construct
(with End Select in this example) at its completion. You don’t need to indent like this; VBScript doesn’t
care. But your code will be easier to read and debug if you use this best practice.

Chapter 1

9

Executing Code Again and Again and Again
If…Then and Select…Case are VBScript’s two logical constructs (also called conditional
statements). VBScript also has looping constructs, which are designed to execute a portion of
code over and over. A practical application of a looping construct is working with Active
Directory (AD), where you might have a script loop through each organizational unit (OU) in the
domain and do something with it. A more fun example is to write a script that is a bit like a baby
brother—cute, but not very useful, and slightly annoying:

Dim iVar

iVar = 1

Do Until iVar = 10

 MsgBox “Why?”

 iVar = iVar + 1

Loop

The script starts by assigning the value 1 to the variable iVar. Next, the script executes a Do
Until…Loop construct. In this example, the code within the loop (the two indented lines) will
execute until iVar contains a value of 10. Each time through the loop, a message box containing
“Why?” will display. Then, iVar will be modified to contain a value equal to its current value,
plus one. In other words, VBScript will add one to whatever iVar contains, then store the result
right back in iVar. In this fashion, iVar will eventually reach ten, and the loop will stop.

) You might have noticed that this guide uses a naming convention for variables: If the variables are
meant to contain strings, their names start with an “s;” if they’re meant to contain integers, they start
with an “i;” date variables start with a “d;” and so forth. Naming conventions don’t affect how VBScript
handles code—you could name variables “kkhlkj” without affecting the output of the script. The
variable naming just makes it easier for you to remember the purpose of the variable.

 Microsoft has an official naming contention that you’ll see in its scripts: “str” for strings, “int” for
integers, and so on. You can make up your own system, or use someone else’s system that makes
sense to you.

The following script is a very minor variation from the previous script:
Dim iVar

iVar = 1

Do

 MsgBox “Why?”

 iVar = iVar + 1

Loop Until iVar = 10

Chapter 1

10

Do you see the variation? iVar isn’t being evaluated until the Loop statement. In practice, these
two scripts will execute identically. However, consider the following variation:

Dim iVar

iVar = 10

Do Until iVar = 10

 MsgBox “Why?”

 iVar = iVar + 1

Loop

Notice that iVar is now being assigned a starting value of ten, which means no message boxes
will ever be displayed, because the condition in the Do Until statement is already satisfied. Now,
move the iVar evaluation back to the Loop statement:

Dim iVar

iVar = 10

Do

 MsgBox “Why?”

Loop Until iVar = 10

iVar isn’t being evaluated until later—the message box will display once, because the loop will
execute once before it gets around to checking the value of iVar. This difference is the only
difference between the two: the location and timing of the variable evaluation. When Do appears
by itself, the loop will always execute at least once; when Do has an Until clause, the loop will
only execute if the Until clause’s expression is false to begin with.

Let’s flip the logic around a bit:
Dim iVar

iVar = 1

Do While iVar = 10

 MsgBox “Why?”

 iVar = iVar + 1

Loop

Chapter 1

11

See the change? The script doesn’t loop until iVar equals ten, it loops only while iVar equals ten.
Because iVar is getting an initial value of one, the loop will never execute because the initial
While clause is false. The clause can be moved to the Loop statement, as well:

Dim iVar

iVar = 1

Do

 MsgBox “Why?”

 iVar = iVar + 1

Loop While iVar = 10

Now the loop will execute once. When it reaches the Loop While statement, it will realize that
iVar doesn’t equal ten (it equals two, at that point), the loop will terminate, and VBScript will
continue with whatever code follows.

Remember that these loops don’t need to use a variable to control their execution; check out the
following example:

Dim sResponse

Do While LCase(sResponse) <> “uncle”

 sResponse = InputBox(“Say Uncle!”)

Loop

After declaring the intention of using a variable named sResponse, the script enters a loop that
will execute until sResponse contains the string “uncle”. The script actually convert sResponse to
lowercase using the LCase() function, and compares that to the string “uncle,” allowing the user
to type in mixed case and still get it right. Within the loop, an InputBox() function encourages
the user to “Say Uncle!” and will pop up again and again until the user actually does so.

) Or, the user could press Ctrl+Break on the keyboard, breaking out of the script and terminating it. You
can always terminate a VBScript by using this method.

Declaring Variables Carefully
Be aware that a single misplace keystroke can have repercussions. Carefully examine the
example script and predict what will happen when it executes:

Dim sResponse

Do While LCase(sRespone) <> “uncle”

 sResponse = InputBox(“Say Uncle!”)

Loop

This script will loop forever, until someone presses Ctrl+Break, or the user reboots the machine.
The reason is that the InputBox() result is being stored in sReponse, but the loop is examining
the value of a different variable, sRepone. Oops. One reason this happens, other than lazy typing,
is that VBScript doesn’t require you to announce variables ahead of time by using the Dim
statement. When VBScript runs across the sRespone variable, it creates the new variable and
gives it the default value of nothing. Because that variable isn’t being modified by the script, an
infinite loop results.

Chapter 1

12

You can guard against this sort of typo with a single statement at the start of each script:
Option Explicit

Dim sResponse

Do While LCase(sRespone) <> “uncle”

 sResponse = InputBox(“Say Uncle!”)

Loop

VBScript will see you declaring the variable sResponse, and think that all is in good order. When
VBScript runs across the never-before-heard-of sRepone, it will throw an error (on line 3 of your
script) indicating that you have an undeclared variable.

) Option Explicit is a highly recommended addition to any script that will help keep you out of scripting
trouble.

Alternative Loops
VBScript contains a completely different type of loop called a For…Next loop. This loop type is
mainly useful for repeating something a specific number of times rather than repeating
something until a condition is true or false. The following script provides an example of a
For…Next loop:

Dim iVar

For iVar = 1 To 10

 MsgBox iVar

Next

iVar is assigned an initial value of 1 by the For statement. Each time the script hits Next, the
script increments iVar by the default increment of 1. When iVar reaches 11—out of the bounds
specified by the For statement—the loop terminates.

You can modify the default increment value:
Dim iVar

For iVar = 1 To 10 Step 2

 MsgBox iVar

Next

Or, you can count backwards:
Dim iVar

For iVar = 10 To 1 Step -1

 MsgBox iVar

Next

Run these two short scripts to see what they do. Keep For…Next firmly in mind because you’re
going to work with it more frequently as you begin working with objects.

Chapter 1

13

Working with Objects
Believe it or not, you’ve actually learned everything an administrator needs to know about
VBScript. The fact is that VBScript isn’t a complicated language. However, what you’ve learned
so far won’t result in faster Windows administration. VBScript’s real value as a scripting
language isn’t in its built-in capabilities. What makes VBScript powerful is its ability to use the
Component Object Model (COM) objects that make up the Windows operating system (OS).
VBScript sort of glues these objects together and makes them do interesting, useful things.

Objects generally represent specific OS functionality, such as Active Directory, the file system,
the network, and so on. Objects have four primary characteristics that you need to be concerned
with:

• Properties—Describe various attributes of an object

• Methods—Instruct an object to perform actions

• Collections—Some objects are comprised of multiple child objects, which are contained
in collections.

• Events—Occur when an object does something, or encounters something, or when
something happens to the object

Administrative scripts don’t really need to use events all that often, so let’s focus on properties,
collections, and methods. To try and make this clearer, let’s take a sample object: Car. The Car
object has several properties, including ModelYear, EngineSize, Make, Model, and Color. This
car is computerized, so you can read these properties and even write them. For example, you
might set the ModelYear property to 2004, or set the Color property to Green. You could check
the EngineSize property and have your script take a different action if the EngineSize was 4.0L
instead of 2.5L.

The Car object also has a collection, named Tires. Each child of the Tires collection is,
predictably enough, a Tire object. Each Tire object has its own properties, such as Position,
Miles, Size, and so forth. If you wanted to see the number of miles on each tire, you might write
a loop like this:

Dim oCar, oTire

Set oCar = CreateObject(“Car”)

MsgBox “Tire report for “ & oCar.ModelYear & “ “ oCar.Model

For Each oTire In oCar.Tires

 MsgBox oTire.Position & “ has “ & oTire.Miles & “ miles.”

Next

� Don’t bother typing in this script and trying to run it—there’s no such object as Car. This script is just
an example of how objects work.

First, VBScript is asked to create the Car object and assign it to the variable oCar. Notice that
this assignment isn’t like a normal value assignment. Although an equal sign is used, the Set
statement is also required. CreateObject() is a built-in function, and Car is the registered class
name for the Car object (for more information about creating objects, read the sidebar, “Creating
Objects”).

Chapter 1

14

A message box displays a brief introduction along with the values of the car’s ModelYear and
Model properties (“Tire report for 2004 Wrangler”). Notice that the variable oCar is used to refer
to the car, and that the properties are “attached” to that reference by a period.

Next, a special For…Next loop is used—a For Each…Next loop, to be specific. A variable,
oTire, is provided. Each time the loop executes, oTire will be set so that it refers to one child of
the Tires collection. The first time through the loop, oTire will refer to the first tire on the car;
the second time, the second tire; and so forth. Within the loop, a message box displays the
current tire’s position and condition: “Left Front has 10,000 miles.”

Creating Objects

When you execute a CreateObject() function, several things happen under the hood. First, VBScript goes
into the registry’s HKEY_CLASSES_ROOT hive to look up the class name you specified. That registry will
tell VBScript which DLL actually implements that class.

Next, VBScript will load that DLL into memory (if it isn’t already loaded into memory). VBScript will assign
a reference to the DLL into the variable you specify so that your variable represents the DLL itself.

From then on, the DLL will remain running as long as your script remains running, and you can
manipulate the DLL using the variable to which the DLL’s reference was assigned. If you want to release
the DLL early, simply set that variable to Nothing by using Set oCar = Nothing, for example.

AD, files and folders, Windows Management Instrumentation (WMI) are all accessible as COM
objects. In fact, there are literally thousands of available COM objects—but only about a half-
dozen you’re likely to find yourself working with at first. One of the important objects is the
WSH library, called WScript.

The WScript Object
WScript is the name of a built-in object that is included as part of WSH. WScript provides some
useful methods, and is always available to your scripts, meaning you don’t need to use
CreateObject(). For example, try the following script:

WScript.Echo “Hello World”

This script displays a message box (or outputs to a command line, depending on which script
host is executing the script; see the sidebar, “What’s a Host?” for more details). Notice that you
don’t need to use CreateObject() to create a reference to WScript. In fact, CreateObject() is
actually a method of the WScript object. The complete, proper syntax for using CreateObject()
is:

Dim oObject

Set oObject = WScript.CreateObject(“object name”)

So why didn’t the previous example use this syntax? Well, you don’t have to, really. If you leave
out WScript, VBScript figures out what you’re trying to do.

Chapter 1

15

What’s a Host?

A script host is simply an executable that runs on Windows and is capable of processing and executing
scripts like the VBScripts you’ll write. Microsoft’s WSH is the most popular host, or at least the one you’ll
use most often.

WSH comes in two flavors. The first is implemented at WScript.exe and the second is CScript.exe. Both
do pretty much the same thing, and, by default, WScript.exe is the one that runs VBS files when you
double-click them. The big difference between the WSH hosts is that WScript is intended for graphical
use, and CScript is intended for command-line use.

When you use a statement such as MsgBox or a function such as InputBox(), you’ll get the same
graphical dialog box regardless of whether you use CScript or WScript. However, when using the intrinsic
WScript object’s Echo method, for example

WScript.Echo “Hello World”

you’ll get very different results from the two WSH hosts. When WScript executes that method, it displays
a dialog box that looks a lot like a message box. When CScript executes it, “Hello World” is output to a
command-line.

CScript is useful for writing your own command-line utilities, especially ones you plan to run under
Scheduled Tasks. The reason is that the Windows Task Scheduler doesn’t provide a graphical
environment for tasks, so any message boxes or input boxes will “freeze” the script and prevent it from
running properly. By using CScript, you can use WScript.Echo and the script will keep working as a
scheduled task.

You can make CScript the default script host, meaning it will execute any VBS files you double-click. Run
WScript.exe or CScript.exe for the proper command-line syntax that allows either one to be set as the
default.

WScript has two other methods you may use form time to time:

• WScript.Quit—This method causes your script to immediately stop executing. You can
use this method to provide users with “Cancel” or “Quit” options, if appropriate.

• WScript.Sleep—This method provides the number of milliseconds you want your script
to pause (for example, WScript.Sleep 1000 to pause for one second), and your script will
sit there and wait.

WSH is bundled with some other useful objects. You’ll need to use CreateObject() with these:

• WshController—This object allows you to instantiate and execute scripts on a remote
computer, and get feedback when those scripts finish executing or encounter an error.

	 Chapter 4 will provide more information about WshController.

• WScript.Network—This object provides access to networking capabilities, such as drive
and printer mapping.

• WScript.Shell—This object provides access to basic Windows Explorer functions, such
as creating shortcuts, executing other scripts or applications, working with environment
variables, accessing the registry, and more.

Chapter 1

16

) Take a moment to open the WSH documentation and locate the references for these objects. As this
guide doesn’t exhaustively cover each and every method and property of these objects, you should
review the documentation to see what else they offer. Browsing the documentation in this fashion is
the best way to get an idea of what capabilities your scripts can utilize.

Listing 1.4 shows an example of the WScript.Shell object in action.
Set oShell = WScript.CreateObject(“WScript.Shell”)
sDesktopFolder = oShell.SpecialFolders(“Desktop”)
Set oLink = oShell.CreateShortcut(sDesktopFolder & _
 “\Shortcut.lnk”)
oLink.TargetPath = WScript.ScriptFullName
oLink.WindowStyle = 1
oLink.Hotkey = “CTRL+SHIFT+F”
oLink.IconLocation = “notepad.exe, 0”
oLink.Description = “Shortcut Script”
oLink.WorkingDirectory = sDesktopFolder
oLink.Save
Set oLink = Nothing
Set oShell = Nothing

Listing 1.4: An example WScriptShell object script.

In Listing 1.4, the script is creating a new WScript.Shell object reference, and letting VBScript
get the DLL up and running in memory. This script uses the SpecialFolders() method to retrieve
the actual path to the special Desktop folder (often somewhere in C:\Documents and Settings). In
addition, the script is using the CreateShortcut() method to create a new shortcut. This method
actually creates a new object; in order to set the properties of this new object, the script captures
a reference to the object in the oLink variable. Notice that this line of code didn’t quite fit on one
line of text; the underscore (“_”) character tells VBScript that the line of code is continued on the
next line of text.

Next, the script set the target for the shortcut to be this actual script, and retrieves the script’s
path using the WScript object’s ScriptFullName property. It then sets several additional
properties for the shortcut, and finally saves those settings using the Save method. Notice that
both object references are set to Nothing before finishing. This setting isn’t necessary; because
the script is done, VBScript will clean up after itself. However, it is a good practice to release all
object references.

The following example provides a shorter sample script that retrieves useful network information
and even maps a network drive. This functionality could be used in a login script.

Set oNetwork = WScript.CreateObject(“WScript.Network”)

WScript.Echo “Domain = “ & oNetwork.UserDomain

WScript.Echo “Computer Name = “ & oNetwork.ComputerName

WScript.Echo “User Name = “ & oNetwork.UserName

oNetwork.MapNetworkDrive “Z:”, “\\Server\Share”

This example should be easy to follow. It creates a WScript.Network object, then outputs the
current user domain, computer name, and user name to the screen. Finally, it maps the Z drive to
the UNC \\Server\Share (which must exist, or you’ll get an error; feel free to change this to a
UNC that exists in your environment).

Chapter 1

17

� You’ll see more of the WScript.Shell and WScript.Network objects in the last section of this chapter,
but feel free to spend some time browsing the WSH documentation and experimenting with these two
objects. Neither of these objects contains any methods or properties that can permanently damage
your OS, computer, or network.

Once you have an idea of what objects are for and how they work, you are ready for an
introduction to a real heavy-hitter—FileSystemObject (FSO).

File and Folder Objects
The FSO is included with WSH and is part of the Windows Scripting Runtime. You’ll find
documentation for the FSO with the rest of the scripting documentation; if you have access to a
copy of the MSDN Library (which comes on CD-ROM and DVD), you can find this
documentation in the contents at Web Development, Scripting, SDK Documentation, Windows
Script Technologies, Script Runtime, FileSystemObject Object.

� Although it looks strange call something the FileSystemObject object, that is correct usage.
FileSystemObject, all one word, is its name, and you’ll commonly see it abbreviated as FSO.

The FSO is a powerful object, providing almost complete access to the Windows file system.
Notice the word “almost.” The FSO doesn’t provide any access to NTFS or share permissions,
nor does it provide access to file and folder auditing settings.

	 WMI provides this type of access; Chapter 3 will explore WMI in more detail.

Getting the FSO up and running is easy enough:
Dim oFSO

Set oFSO = WScript.CreateObject(“Scripting.FileSystemObject”)

) How do you discover that the official name of the FSO is Scripting.FileSystemObject and not just
FileSystemObject? Through experience and by looking at the documentation. Don’t be afraid to read
the manual when it comes to scripting. You’ll save tons of time. At the very least, try to look at
someone else’s work (for example, check out the samples available at
http://www.ScriptingAnswers.com) to see what they did—there’s no sense in reinventing the wheel.

Once you have a reference to the FSO (the reference in the previous example is in the oFSO
variable), you can start using it. The FSO has three child objects that you should know about:

• Drive—This object represents a logical drive on your computer (the FSO doesn’t provide
access to physical disks, only logical drives)

• Folder—This object represents a folder or directory

• File—This object represents a single file

http://www.scriptinganswers.com/

Chapter 1

18

See if you can make sense of this example:
Dim oFSO

Set oFSO = WScript.CreateObject(“Scripting.FileSystemObject”)

WScript.Echo oFSO.GetDrive(“C:”).RootFolder.Path

The first two lines probably make sense. They’re just declaring a variable, then creating the FSO
object and assigning a reference to that variable. The third line is a bit thick, though.

You’re familiar with WScript.Echo by now; the rest of the line is the FSO’s GetDrive() method,
which retrieves a reference to a particular logical drive (in this case, the C drive). The result of
this method is a Drive object, which has a RootFolder property. Not surprisingly, this property
represents the root folder of that drive, and has a Path property that displays the root folder’s
complete path—C:\ in this example.

The following script works with a folder. Note that you’ll need to provide a folder name that
actually exists and that you don’t mind losing:

Dim oFSO

Set oFSO = WScript.CreateObject(“Scripting.FileSystemObject”)

Set oFolder = oFSO.GetFolder(“C:\DeleteMe”)

oFolder.Delete

There is no “Are you sure?” prompt, and the Recycle Bin isn’t involved; that folder is history.
Oddly, the FSO provides almost two ways to do everything, and here’s the other:

Dim oFSO

Set oFSO = WScript.CreateObject(“Scripting.FileSystemObject”)

oFSO.DeleteFolder “C:\DeleteMe”

See the difference? In the first example, the script used the GetFolder() method to retrieve a
Folder object, which represented the folder in which the script is interested. The script then used
that object’s Delete method to delete it. In the second example, the script used the FSO’s direct
DeleteFolder method to delete the folder. Same result, slightly different approach.

Files work similarly. Note again that you’ll need to provide a filename that exists:
Dim oFSO

Set oFSO = WScript.CreateObject(“Scripting.FileSystemObject”)

Set oFile = oFSO.GetFile(“C:\MyFile.txt”)

oFile.Copy “D:\MyFile.txt”

Chapter 1

19

Again, you could shortcut this process by using the FSO’s direct CopyFile method, as the
following example shows. This example also includes some program logic—you remember the
If…Then construct, right?

Dim oFSO

Set oFSO = WScript.CreateObject(“Scripting.FileSystemObject”)

If oFSO.FileExists(“C:\MyFile.txt”) Then

 OFSO.CopyFile “C:\MyFile.txt”, “D:\MyFile.txt”

End If

Even if the file doesn’t exist, your script will run, because the script is using the FSO’s
FileExists() method to check for the file’s existence before trying to copy it. Notice that the
If…Then construct doesn’t actually seem to have an expression (there is no comparison or equals
sign). The reason is that the FileExists() method returns either a True or False; VBScript will
execute the interior code if FileExists() returns True, and it will skip the interior code if
FileExists() returns False. The following version of this example does exactly the same thing, but
explicitly states the condition:

Dim oFSO

Set oFSO = WScript.CreateObject(“Scripting.FileSystemObject”)

If oFSO.FileExists(“C:\MyFile.txt”) = True Then

 OFSO.CopyFile “C:\MyFile.txt”, “D:\MyFile.txt”

End If

If the D drive doesn’t exist, the script will still fail with an error message. There is a way around
this failure—actually, two ways. The first is

Dim oFSO

Set oFSO = WScript.CreateObject(“Scripting.FileSystemObject”)

If oFSO.FileExists(“C:\MyFile.txt”) Then

 If oFSO.DriveExists(“D:”) Then

 OFSO.CopyFile “C:\MyFile.txt”, “D:\MyFile.txt”

 Else

 WScript.Echo “Can’t copy file; D: doesn’t exist”

 End If

End If

Chapter 1

20

This script uses a nested If…Then construct to catch the possibility that D doesn’t exist. This
workaround is a good way to handle possible error conditions—anticipate them, and have your
script check to see if everything is in place first. Another way is to do so is to use

Dim oFSO

On Error Resume Next

Set oFSO = WScript.CreateObject(“Scripting.FileSystemObject”)

If oFSO.FileExists(“C:\MyFile.txt”) Then

 OFSO.CopyFile “C:\MyFile.txt”, “D:\MyFile.txt”

 If Err.Number <> 0 Then

 WScript.Echo “Error copying file to D: “ & Err.Description

 End If

End If

This script includes a special statement—On Error Resume Next. This statement tells VBScript
to ignore an error if one occurs. VBScript won’t stop running the script if an error occurs;
instead, it populates a special object named Err with information about the error, and lets you
deal with it. You can see the code that has been added to deal with a potential error. If the error
number is anything but zero (zero means no error occurred), the error’s description is helpfully
displayed.

The following script illustrates another FSO trick:
Dim oFSO, oTS

Set oFSO = WScript.CreateObject(“Scripting.FileSystemObject”)

Set oTS = CreateTextFile(“C:\MyOutput.txt”)

oTS.WriteLine “Hello, world!”

oTS.Close

WScript.Echo “All done!”

This sample uses another FSO child object, called a TextStream object. A TextStream represents
a stream of text in a file, or, in plain English, a text file. In this case, the script created a new text
file, wrote a line of text to it, then closed the file. You can also use the OpenTextFile() method to
open an existing text file, and the ReadLine method to read lines of text from it. In either case,
both CreateTextFile() and OpenTextFile() are methods of the FSO that return a TextStream
object; that object is assigned to a reference variable (oTS in the previous example). WriteLine
and ReadLine are methods of the TextStream object; Close is also a method of the TextStream
object and closes the file.

Chapter 1

21

Your First Administrative Script
Your whirlwind introduction to VBScript is almost at a close. Before we dive into anything else,
though, let’s wrap up everything we’ve explored so far with a quick walkthrough of a complete
script, which you’ll write from scratch. Here’s the task: Create a text file that contains the name
of each user logging onto each computer in your environment.

When you have a task to write a script for, you need to start by breaking down the task into
pieces to make it approachable. Otherwise, this task becomes a giant obstacle, and you’ll spend 3
weeks on Google looking for a pre-written script. The following list provides a not-necessarily-
orderly thought process for this task:

• Write a file—Use the FSO to create a text file, which gets you a TextStream; use that
object’s WriteLine method to write the content to the file.

• Access the computer and user name—Use the WScript.Network object to get your
computer name and user name.

• Store a file on a file server where all users can access the file (you probably suspect that
if several users try to open a text file at the same time, they won’t all be able to write to it,
so you’ll need to handle this complication).

• Assign a VBScript as a logon script in AD.

So, the first step is to create a script that is a logon script, and assign it to each user. Have the
script open a text file and write out the computer and user names. Potential problem: If two users
log on at once (which is probably inevitable), one of them might not be able to write to the file
while the other one has the file opened.

Rather than mess around with potential problems, look immediately to find a workaround.
Perhaps have each user’s logon script write a separate file. Computer names are unique, so you
can have each script write a file named after the computer. The file can contain the user and
computer name. You can write another script to run in the afternoon—after everyone’s logged
on—that puts all the text files together into one. Maybe not the most elegant solution, but it will
get the job done. So the first script looks like this:

Dim oFSO, oNetwork, oTS

Set oFSO = WScript.CreateObject(“Scripting.FileSystemObject”)

Set oNetwork = WScript.CreateObject(“WScript.Network”)

Set oTS = oFSO.CreateTextFile(“\\Server\Share\” & _

 oNetwork.ComputerName & “.txt”, True)

oTS.WriteLine oNetwork.ComputerName & “,” & _

 oNetwork.UserName

oTS.Close

Chapter 1

22

You can assign this script as a logon script. Most of the work is done on line four: the script asks
the FSO to create a text file on \\Server\Share, named after the computer, with a .TXT filename
extension. Notice the second parameter, “True.” That tells the FSO to overwrite any existing file
of the same name—just to be sure. The script then uses the WriteLine method to output the
computer name, a comma, and the username, all on one line, to the next file. Finally, the script
closes the file. Later, you can run the following script:

Dim oFSO, oFile, oFolder, oTS, oTS2

Set oFSO = WScript.CreateObject(“Scripting.FileSystemObject”)

Set oTS = oFSO.CreateTextFile(“C:\Names.txt”)

Set oFolder = oFSO.GetFolder(“\\Server\Share”)

For Each oFile In oFolder.Files

 Set oTS2 = oFSO.OpenTextFile(“\\Server\Share\” & oFile.Name

 oTS.WriteLine oTS2.ReadLine

 oTS2.Close

Next

oTS.Close

WScript.Echo “Done merging files”

The action begins on line four, where the script asks the FSO to get a reference to the folder
containing all those text files. It returns a Folder object. One of a Folder object’s properties,
Files, is actually a collection of individual File objects.

At this point, the script turns to a For Each…Next construct. The construct loops through each
child object of the Files collection, representing each one in the variable oFile. The script uses
the oFile reference to open each file, write its contents to an output file, then close the file. When
it’s all over, the script will helpfully display a message telling you that it has finished (otherwise,
you might not know when all the files have been processed; scripts don’t give any automatic
visible indication when they’re finished running). Try experimenting with this script on your
own and see what you can get it to do.

Chapter 1

23

Summary
Although there is a lot of additional scripting information, much of it isn’t of great interest to
most administrators. For example, this chapter has completely skipped Dictionary objects,
because not many administrators need to use them. Like most other administrators, you’re
probably more interested in getting up and running than reading about scripting you won’t even
use.

	 If you’re really interested in learning more about scripting just for the sake of knowledge, check out
the following resources:

	 Managing Windows with VBScript and WMI (Addison-Wesley)—A no-nonsense guide to scripting for
Windows administrators

	 Microsoft Windows 2000 Scripting Guide (Microsoft Press)—An in-depth guide to everything scripting
can do.

	 Both are good choices for a scripting administrator’s bookshelf, although many of the samples from
the Scripting Guide are available for free in the Microsoft TechNet Script Center at
http://www.microsoft.com/technet/community/scriptcenter/default.mspx.

Things get more fun in the next chapter, in which you’ll learn how to write scripts that work with
AD, local computer accounts, and more by using the Active Directory Services Interface (ADSI).
In Chapter 3, we’ll explore scripting a bit more in-dept and start using WMI to query and change
computers’ configuration information.

http://www.microsoft.com/technet/community/scriptcenter/default.mspx

Chapter 2

24

Chapter 2: Working with ADSI

With all the hype about WMI, ADSI has been getting short shrift, which is a shame because
ADSI is such a useful tool. A possible reason that ADSI is overlooked by most administrators is
that it is poorly named. Many administrators assume that a tool named Active Directory Services
Interface deals solely with AD. The truth is that ADSI can work with AD, but offers many
additional capabilities.

ADSI Without a Directory
Some of ADSI’s most useful features have nothing to do with any directory, let alone AD.
Listing 2.1 shows a favorite sample scripts; this script should work without modification in any
environment. It contacts any Windows file server—domain member or not—and tells you which
users currently have a particular shared file open.
‘ first, get the server name we want to work with
sServerName = InputBox ("Server name to check")

‘ get the local path of the file to check
sFilename= InputBox ("Full path and filename of the " & _
 "file on the " & _
 "server (use the local path as if you were " & _
 "at the server console)")

‘ bind to the server’s file service
Set oFileService = GetObject("WinNT://" & sServerName & _
 "/lanmanserver,fileservice")

‘ scan through the open resources until we
‘ locate the file we want
bFoundNone = True

‘ use a FOR...EACH loop to walk through the
‘ open resources
For Each oResource In oFileService.Resources

 ‘ does this resource match the one we’re looking for?
On Error Resume Next
 If oResource.Path = sFilename Then
 If Err <> 0 Then
 WScript.Echo "Couldn’t locate the resource, or " & _
 "permission denied."
 End If
 ‘ we found the file - show who’s got it
 bFoundNone = False
 WScript.Echo oResource.Path & " is opened by " & oResource.User
 End If
Next

‘ if we didn’t find the file open, display a msg
If bFoundNone = True Then
 WScript.Echo "Didn’t find that file opened by anyone."
End If

Listing 2.1: Sample ADSI script that enables you to determine which users have a shared file open.

Chapter 2

25

This script provides a great way to learn how ADSI works outside of directories. The script starts
off by asking you for a server name to check. This name should be entered without backslashes.
Next, you must type the path and filename of the open file you’re curious about. This path needs
to be the local path on the server. For example, suppose you have a file server that contains a
folder named D:\Shares\Sales. This folder is shared as SalesData, and it contains an Excel
spreadsheet named Forecasts.xls. Users access this file at \\Server\SalesData\Forecasts.xls.
However, you would provide this script with D:\Shares\Sales\Forecasts.xls, because that’s the
local path as far as the server is concerned.

Next, the script begins to use ADSI and uses the Set statement. In the previous chapter, I
explained that the Set statement is used to assign an object reference to a variable. That’s exactly
what’s going on here. However, in the previous chapter, I also told you that the CreateObject()
function was used to load DLLs into memory and obtain that reference—this script is using
GetObject() instead.

In the case of ADSI, you don’t want to load a DLL into memory. You want to reach out and
connect to some service that is already running on a remote machine. Thus, rather than creating
an object, you just want to access an existing, remote object. Hence, GetObject(). The argument
passed to GetObject() tells VBScript what to go get. In this case, the WinNT:// name tells
VBScript that you’re using ADSI’s Windows NT directory provider. The script also passes the
server name you entered, then specifies a connection to the lanmanserver object on that server.
Specifically, it wants a fileservice named lanmanserver.

So, we’ve established that ADSI isn’t just for AD. ADSI is actually a generic directory access
technology. Even NT boxes expose many of their services in a directory-like format that is
accessible through ADSI’s WinNT provider. Let’s take a closer look at the ADSI call in Listing
2.1:

‘ bind to the server’s file service

Set oFileService = GetObject("WinNT://" & sServerName & _

 "/lanmanserver,fileservice")

In this call:

• The script uses the Set keyword because it is assigning an object reference to a variable.

• The script specifies the variable—in this case, oFileService.

• The script specifies the GetObject() function, which has nothing specifically to do with
ADSI; it is simply a generic function that connects to the object you specify. Generally,
this function connects to objects that are actually services running on the local machine or
a remote machine.

• The script specifies the ADSI provider—in this example, WinNT://.

� The provider names are case-sensitive; thus, in this case, winnt:// will not work.

Chapter 2

26

• Next is the server name, which can be the local box or a remote one, it doesn’t matter. In
this example, the script uses a variable to store the server name, and appends it into the
ADSI call by using VBScript’s string-concatenation operator, the ampersand (&).

• Next, the script names an object or resource on the computer, which is the object or
resource to which ADSI will actually connect.

	 Later in this chapter, we’ll explore user and group names as the object to connect with; in the
example that Listing 2.1 shows, the object or resource is lanmanserver, which happens to be the
internal name of Windows’ Server service.

• Optionally, you can specify an object class. In this example, the script specifies
fileservice. If you don’t specify an object class, ADSI will latch onto the first object or
resource it finds that matches the name specified. For example, if I had a user named
lanmanserver, then ADSI might grab that user instead of the Server service. However, by
specifying the object class, I ensure that ADSI will grab the resource in which I’m
interested.

After the first 11 lines of the script, it gets less complicated. On line 15, the script assigns the
value True to a variable named bFoundNone, which is a sort of reminder that I haven’t yet found
any users who were using the specified file.

Keep in mind that, at this point, oFileService essentially represents the Server service on
whatever server the script specifies. The Server service exposes a list of every resource it is
currently managing. Thus, on line 19, I walk through each one of those resources in a For
Each…Next loop. Each time through the loop, oResource will represent the current resource.

On line 22, the script performs the actual comparison: Does the current resource’s Path property
equal the filename that you typed into the script? If so, the script sets bFoundNone to the value
False, because it has clearly found someone who is using the file. Next, the script outputs the
resource’s path and the user name that has the file open. The script doesn’t stop the script at this
point. The reason is that than one user can have a file open, and I want to find all of them. Thus,
the script has the For Each…Next loop continue through the whole collection of resources.

When the loop is done, the script displays a message if it hasn’t found any users who have the
file open. If the script didn’t do so and nobody had the specified file open, the script would end
with no visual indication, leaving you to wonder whether the script was still running.

How This Script Was Designed

I have been working with Windows since the NT 3.1 days. Until Win2K, administrators used a
management application called Server Manager. With it, you could double-click a server and get a list of
every resource that the server was currently managing—namely, open shared files. To discover which
user had a file open, you simply opened this list—which on a busy file server would have thousands of
entries—and start scrolling through it, looking for the filename in which you were interested. Of course, by
the time you got to the end of the list, it was out of date and you would have to close the list, reopen it,
and start over. However, it never took more than an hour or so to go through the list.

The script that Listing 2.1 shows performs the same task as the Server Manager utility—it simply does so
faster and with an infinitely better attention span to its assigned task. In designing this script, I simply
wanted to duplicate—and speed—the task I already knew how to do manually. With a little research, I
discovered that ADSI could perform this task for me.

Chapter 2

27

ADSI Providers
Now that we’ve explored a little about how ADSI works, it’s probably time for a more formal
introduction. ADSI is Microsoft’s technology for generic directory access; the fact that ADSI has
Active Directory in the name does not mean that it works only with AD. ADSI is preinstalled on
Win2K and later, and its core components are also installed with the Directory Services client for
NT. ADSI ships with three key providers:

• WinNT—Provides access to NT domains, local computer resources (including Win2K
and later boxes), and local security accounts (for Win2K and later).

• Lightweight Directory Access Protocol (LDAP)—Enables you to connect to any LDAP-
enabled directory, such as Lotus Notes/Domino, Novell Directory Services (NDS),
Microsoft Exchange Server 5.0 or 5.5, and Microsoft AD.

� There is also a specific NDS provider, but LDAP is just as useful with the latest versions of NDS.

• NWCOMPAT—Provides connectivity to Novell NetWare 2.x and 3.x binderies (should
you happen to work in the Smithsonian where they surely have some of these relics on
display).

All of the providers work slightly differently. And let me emphasize once again that these are
case-sensitive. In other words, ldap is not the same thing as LDAP, and ADSI will give vague
errors if you use the incorrect provider name.

The WinNT Provider
You’ve already seen the basic syntax for the WinNT provider:

WinNT://host/object,class

Host in this case can be a server, workstation, or domain name. If you provide a domain name,
your client will follow all the usual rules for locating a domain controller (for example, querying
WINS, querying DNS, and so on). Specifying a domain name is useful if you want to mess
around with domain usernames and groups; you can also specify the name of a domain
controller, of course, rather than the domain name. It’s your choice. If you perform an operation
that requires an object to be changed (such as changing a user’s password), then ADSI will
automatically reconnect to the Primary Domain Controller (PDC), the only domain controller in
an NT domain that can make changes to the domain (remember that Backup Domain
Controllers—BDCs—are read-only).

Pay close attention: You can connect to AD by using the WinNT provider. The reason is that AD
emulates an NT domain. There is a PDC Emulator that runs on one domain controller in every
AD domain, and every AD domain controller can provide services to downlevel, NT-based
clients.

Chapter 2

28

The LDAP Provider
NT domains are a flat namespace, which is a fancy way of saying that there are no organizational
units (OUs), containers, sites, and so forth. Thus, if you’re connecting to AD via the WinNT
provider, you can’t modify OUs, containers, sites, and the things that NT domains don’t have. To
use the full power of AD through ADSI, you must use the slightly more complex LDAP
provider, which works like this:

LDAP://fqdn

Not very exciting, is it? Here’s an actual example:
LDAP://cn=donj,ou=research,dc=scriptinganswers,dc=com

You have to use LDAP-style naming to provide the fully-qualified domain name (FQDN) of the
object to which you want to connect. There is no need to specify object classes because you’re
being very specific: the example shows a user named donj, in an OU named research, in a
domain named scriptinganswers.com. The order of these components is important. You must
start with the object name, then the OU that contains the object, any parent OUs, then the domain
name components from left to right (for example, scriptinganswers first, then com second, for
scriptinganswers.com).

When you plug this query into GetObject(), the output depends on the query. If you query a user,
the output will be a user object. If you query a computer, you’ll get a computer object back.
However, you can’t query non-directory items, such as lanmanserver; although the WinNT
provider has access to a number of non-directory items, LDAP can only access what is in the
directory. What you can do with the object that GetObject() returns depends on what type of
object it is. For example, with a user object, you can:

Set oUser = GetObject _

("LDAP://cn=donj,ou=research,dc=scriptinganswers,dc=com")

oUser.ChangePassword "password", "BetterPassword!"

In this example, the User object, as you can see, sports a ChangePassword method that can be
used to change the password. You must know the old password in order to change it to a new
password.

Chapter 2

29

If you query a Group object, you can change the group’s type:
Const ADS_GROUP_TYPE_GLOBAL_GROUP = &h2

Const ADS_GROUP_TYPE_LOCAL_GROUP = &h4

Const ADS_GROUP_TYPE_UNIVERSAL_GROUP = &h8

Const ADS_GROUP_TYPE_SECURITY_ENABLED = &h80000000

Set oGroup = GetObject _

 ("LDAP://cn=Writers,dc=scriptinganswers,dc=com")

oGroup.Put "groupType", _

 ADS_GROUP_TYPE_GLOBAL_GROUP + ADS_GROUP_TYPE_SECURITY_ENABLED

oGroup.SetInfo

In this example, the script first defines four constants. Constants, as you may remember, are a
way of assigning a friendly name to a difficult-to-remember value. They also make your script a
bit easier to read; in this case, the names are easier to figure out than the hexadecimal values that
the names represent.

Next, the script uses an LDAP call to ADSI to retrieve a group named Writers. The script then
uses the Put method of the Group object. Most objects returned by GetObject()from an LDAP
query will support the Put and Get methods. These methods allow you to write and read,
respectively, any property of the object. In the previous example, the script is writing the
groupType property, which, not surprisingly, tells AD what type of group this is.

After specifying the property name, the script needs to specify the value to be put into the
property. All you need to do is specify the correct constant name, and if you want the group to be
a security group (as opposed to a distribution group), add that constant into the mix. In this
example, the group is a global security group.

Whenever you use Put to make changes to an object’s properties (or attributes), you must finish
off with the SetInfo method to save your changes. The reason is that ADSI caches your changes
as you make them, but doesn’t actually send them off to the domain controller until you execute
SetInfo. This technique helps make ADSI a bit more efficient.

Chapter 2

An ADSI Shortcut
The Microsoft Scripting Guys—Microsoft employees who promote scripting in their spare time,
and who are also full-time members of the Windows product team—have created several labor-
saving devices for scripters. One of their nifty tools is the ADSI Scriptomatic, which you can
download for free from
http://www.microsoft.com/technet/community/scriptcenter/tools/admatic.mspx. It’s an HTML
Application (HTA), which means you’ll need to have Internet Explorer (IE) installed to run it.
Figure 2.1 shows the ADSI Scriptomatic.

Figure 2.1: The ADSI Scriptomatic generates ADSI scripts for you.

Basically, you just tell this tool what you want to do—Create an Object, in this case—and what
object class you want to use. I selected the User class, so the tool generated a script to create a
user. Let me briefly walk through this script, because it’s the same basic template used for all of
the tool’s scripts. Understanding it will help you better understand how ADSI works.

30

http://www.microsoft.com/technet/community/scriptcenter/tools/admatic.mspx

Chapter 2

31

The first two lines simply set up two string variables:
strContainer = ""

strName = "EzAdUser"

These contain the name of the container in which the new object should be created, and the name
that the new object should be given. You would obviously change these to the appropriate names
for your environment.

� Notice that the script uses a variable naming convention; per best practice, the tool uses a three-letter
prefix as specified in Hungarian notation, which is a Microsoft-favored notation for VBScript.

Next, as the comment says, the script connects to the container. First, it connects to the root of
AD, for whichever domain the computer running the script is a member:

‘***

‘* Connect to a container *

‘***

Set objRootDSE = GetObject("LDAP://rootDSE")

� rootDSE is a special LDAP object that exists on all LDAP servers. Any LDAP server (version 3 or
later) will respond correctly to a query for the rootDSE.

If a container name has not been specified, the script connects to the default naming context of
the domain’s root. Otherwise, the script connects to the default naming context of the specified
container. Either way, what you get back is a container of some kind—the default Users
container or a specified OU:

If strContainer = "" Then

 Set objContainer = GetObject("LDAP://" & _

 objRootDSE.Get("defaultNamingContext"))

Else

 Set objContainer = GetObject("LDAP://" & strContainer & "," & _

 objRootDSE.Get("defaultNamingContext"))

End If

‘***

‘* End connect to a container *

‘***

Chapter 2

32

Next, the script uses the container’s Create method to create an object. The script specifies the
class of the object as user and specifies the new user’s common name, which is cn= plus
whatever is in the variable strName. The Create method returns a reference to the newly created
object, which is stored in the variable objUser.

Set objUser = objContainer.Create("user", "cn=" & strName)

Next, the script uses the new object’s Put method to set the sAMAccountName attribute to the
new object’s username. SetInfo is called to save everything, and the script is finished.

objUser.Put "sAMAccountName", strName

objUser.SetInfo

� sAMAccountName might look like a case of the Shift key gone wrong, but it’s actually correct. SAM
stands for Security Accounts Manager; the attribute should be named "SAMAccountName," but AD’s
schema naming standards specify a lowercase letter for the first letter in the attribute name, so
sAMAccountName it is.

Querying Global Catalog Servers
In an AD domain, one or more servers fill the role of Global Catalog (GC) server, a server that
holds information about every object in the entire forest. You can query GCs directly by using
ADSI. The following example uses the special GC: provider to get a list of GC servers’ domains:

Set oList = GetObject("GC:")

For Each oServer in oList

 WScript.Echo oServer.ADsPath

Next

Of course, once you have a GC’s name (or ADsPath), you can query the server directly to
retrieve information.

� Microsoft provides a sample script at http://support.microsoft.com/?kbid=252490 that will tell you
whether a particular user principle name (UPN) exists in a forest so that you can avoid making
duplicate user objects.

http://support.microsoft.com/?kbid=252490

Chapter 2

33

Useful ADSI Scripts
At this point, you should have some idea of how ADSI works and how you can use it within your
scripts. The best way to learn more details is to actually explore useful ADSI scripts, so I’ll give
you a bunch of short little scriptlets and explain how they work. Most of these are scriptlets that
you would incorporate into your own, larger scripts; they’re not necessarily intended to be run
entirely on their own. Pay special attention to where I’m using the WinNT and LDAP providers;
you’ll get a better feel for what capabilities each can provide to your scripts.

User Account Scripts
The ability to batch create users is a great reason to write a script. Suppose you have a text file
(or an Excel spreadsheet) that lists the users you need to create. From Excel, save the file as a
CSV and use the script that Listing 2.2 shows.

‘ PART 1: Open up the text file
Dim oFSO, oTS
Set oFSO = CreateObject("Scripting.FileSystemObject")
Set oTS = oFSO.OpenTextFile("c:\users.csv")

‘let’s agree that the CSV file’s first line will
‘be the column names, and that they will be:
‘ Username, Fullname, Description, HomeDir

‘ PART 2: Get a reference to the
‘ Windows NT or AD domain using ADSI
Dim oDomain
Set oDomain = GetObject("WinNT://NT4PDC")

‘ PART 3: Open an output text file
‘ to store users’ initial passwords
Dim oTSOut
Set oTSOut = oFSO.CreateTextFile("c:\passwords.csv",True)

‘ create the necessary variables
Dim sUserID, sFullName, sDescription
Dim sPassword, sHomeDir

‘skip the first line of the file
Dim sLine, sData
sLine = oTS.ReadLine

‘ now go through the file one
‘ line at a time
Do Until oTS.AtEndOfStream

 ‘read the line and split it
 ‘on the commas
 sLine = oTS.ReadLine
 sData = Split(sLine,",")

 ‘ get the user information from this row

Chapter 2

34

 sUserID = sData(0)
 sFullName = sData(1)
 sDescription = sData(2)
 sHomeDir = sData(3)

 ‘ make up a new password
 sPassword = Left(sUserID,2) & _
 DatePart("n",Time) & _
 DatePart("y",Date) & _
 DatePart("s",Time)

 ‘ create the user account
 Set oUserAcct = oDomain.Create("user",sUserID)
 oUser.Put "sAMAccountName", sUserID

 ‘ set account properties
 oUserAcct.SetPassword sPassword
 oUserAcct.FullName = sFullName
 oUserAcct.Description = sDescription
 oUserAcct.HomeDirectory = sHomeDir

 ‘ save the account
 oUserAcct.SetInfo

 ‘ write password to file
 oTSOut.Write sUserID & "," & sPassword & VbCrLf

Loop

‘ PART 6: Final clean up, close down
oRS.Close
oTS.Close
WScript.Echo "Passwords have been written to c:\passwords.csv."

Listing 2.2: Script to batch create users.

	 This example script employs fancy stuff with text files that I haven’t yet introduced; we’ll explore them
a bit later in this chapter.

The script that Listing 2.2 shows assumes that your column names are Username, Fullname,
Description, and HomeDir, and that the first row of your spreadsheet (or CSV file) uses those
column names. Because it utilizes the WinNT provider, this script will work with any Windows
domain; in an AD domain, users will be created in the default Users container, and you can move
them from there. The script makes up a non-random password for each user, which it writes to a
text file for your reference.

Chapter 2

35

Group Scripts
One common task that you might want to perform for a group is to determine a group’s
membership, especially with security-sensitive groups such as the local Administrators group. In
this case, the WinNT provider can be helpful, even in AD domains, because the WinNT provider
can work with local groups on member and standalone computers. The following script provides
a list of every local group on a designated computer and every member of each group:

Dim sComputer, cGroups, oGroup, oUser

sComputer = "ClientA"

Set cGroups = GetObject("WinNT://" & sComputer & "")

cGroups.Filter = Array("group")

For Each oGroup in cGroups

 WScript.Echo oGroup.Name & " members:"

 For Each oUser in oGroup.Members

 WScript.Echo oUser.Name

 Next

Next

This script connects to the remote computer and retrieves every object that the computer’s
WinNT provider can handle. It then adds a one-element array containing the string “group” to
the resulting collection’s Filter property. Doing so has the effect of filtering the collection to only
include (or at least seem to include) objects of the class “group.” Then the script uses two For
Each…Next loops. The outer loop enumerates the groups on the computer, and the inner loop
enumerates the members of each group.

If you want to add a user to a group, you can use a script similar to the following example. This
script uses ADSI to add a user to an AD group:

Const ADS_PROPERTY_APPEND = 3

Set objGroup = GetObject _

 ("LDAP://cn=Special,cn=Users,dc=scriptinganswers,dc=com")

objGroup.PutEx ADS_PROPERTY_APPEND, "member", _

 Array("cn=donj,ou=Executives,dc=scriptinganswers,dc=com")

objGroup.SetInfo

This script starts by getting a reference to the group that is to be modified. Keep in mind that the
members of a group are part of the group object, not the user. In other words, user objects don’t
contain a list of the groups to which the user belongs. Group objects contain lists of users (and
other groups), not the other way around. Thus, if you want to modify a group’s membership, you
must access the group object.

Chapter 2

36

Next, the script modifies the group’s “member” property. Rather than complete overwrite this
property, the script simply seeks to append a value to the property. The special PutEx method
allows you to pass the property a value, which is stored in a constant, specifying that the script is
only appending data to the property, not completely rewriting the property.

The script then provides the property in question—“member”—and the value to be appended.
PutEx takes arrays, so the script uses the VBScript Array() function. This function accepts a list
of values (just one value, in this example, but you could provide a whole comma-delimited list of
values) and turns the list into an array that PutEx can deal with. The value that the script provides
is the FQDN of the user to be added to the group (you can also specify a group to add to the
group). Finally, the script uses SetInfo to write everything back to the domain controller and
saves the change.

Computer Account Scripts
AD does amazingly cool stuff when a Win2K or later machines logs on. The NetLogon service
actually feeds some basic inventory data about the machine into AD—kind of a mini-Systems
Management Server (SMS). Some of this information is displayed in the computer’s Properties
dialog box in the Microsoft Management Console (MMC) Active Directory Users and
Computers console; you can also query this information from AD by using a script similar to the
example that Listing 2.3 shows.
strContainer = "ou=Domain Controllers"
strName = "BRAINCORENET"

On Error Resume Next

‘***
‘* Connect to an object *
‘***
Set objRootDSE = GetObject("LDAP://rootDSE")
If strContainer = "" Then
 Set objItem = GetObject("LDAP://" & _
 objRootDSE.Get("defaultNamingContext"))
Else
 Set objItem = GetObject("LDAP://cn=" & strName & "," & _
 strContainer & "," & _
 objRootDSE.Get("defaultNamingContext"))
End If
‘***
‘* End connect to an object *
‘***

WScript.Echo " DNS: " & objItem.Get("dnsHostName")
WScript.Echo " OS: " & objItem.Get("operatingSystem")
WScript.Echo "OS ver: " & objItem.Get("operatingSystemVersion")
WScript.Echo " SP: " & _
 objItem.Get("operatingSystemServicePack")
WScript.Echo "Hotfix: " & objItem.Get("operatingSystemHotfix")

Listing 2.3: An example script to query basic inventory information about a machine.

Chapter 2

37

As Listing 2.3 shows, I used the ADSI Scriptomatic as the starting point for my script, and filled
in the OU and computer name that I was interested in. The Scriptomatic code connects to the
computer object in the directory; the script then uses the Get method to retrieve a few properties.
Try this with Win2K machines, which are interesting because they have service packs and other
items installed. Querying a Windows 2003 server gets you the following output:

 DNS: braincorenet.braincore.pri

 OS: Windows Server 2003

OS ver: 5.2 (3790)

Notice that the last two properties aren’t displayed because I haven’t applied any service packs
or anything to this computer.

Where Does He Get This Stuff?

You might be wondering where I discovered the "operating SystemServicePack" attribute and some of the
other properties. Knowing what is available to you is a big part of scripting. In the previous chapter, I
recommended becoming friendly with the VBScript documentation because browsing would help you
determine what is possible with VBScript. I recommend the same thing for ADSI—get to know your
objects.

You can do so by browsing the Internet. Plenty of sites, including Microsoft’s and my own
ScriptingAnswers.com, provide oodles of examples to learn from. The easiest way to get to know ADSI,
however, is built right into Windows itself. Open a command line on a domain controller. Change to the
\Windows\System32 folder. Run Regsvr32 schmmgmt.dll, then run Mmc. From the Console menu, select
Add/Remove Snap-Ins, and add the Active Directory Schema snap-in (the business about running
Regsvr32 is necessary because the Schema snap-in isn’t registered and available by default; thus, you
only need to do it the first time).

Next, click on the “computer" class in the left tree view. In the right pane, you see a list of every possible
attribute for a computer object; you can do the same for any AD object, including users, groups, and
more. Browsing through the list reveals plenty of potentially useful properties, all of which are accessible
from your scripts.

Computer Management Scripts
The WinNT provider is very useful for working with local computer accounts. For example, one
security task that often goes undone is a regular password change for the local Administrator
account on each of your computers. The script that Listing 2.4 shows will read computer names
(one name per line) from a text file named c:\computers.txt, then change the Administrator
account password on each of them. This script will skip over any computers that the script can’t
contact at the time, writing their names to c:\skipped.txt. You can then rename c:\skipped.txt to
c:\computers.txt and have the script retry those computers later.

Chapter 2

38

‘Create a FileSystemObject
Set oFS = CreateObject("Scripting.FileSystemObject")

‘Open a text file of computer names
‘with one computer name per line
Set oTS = oFS.OpenTextFile("c:\computers.txt")
Set oTSOut = oFS.CreateTextFile("c:\skipped.txt")

‘go through the text file
Do Until oTS.AtEndOfStream

 ‘get the next computer name
 sComputer = oTS.ReadLine

 ‘retrieve that computer’s local Admin
 On Error Resume Next
 Set oUser = GetObject("WinNT://" & _
 sComputer & "/Administrator,user")

 If Err = 0 Then
 ‘reset the password
 oUser.SetPassword "New!Ad3in"

 ‘save the change
 oUser.SetInfo
 Else
 oTSOut.WriteLine sComputer
 End If
 On Error Goto 0

Loop

‘close the text file
oTS.Close
oTSOut.Close
MsgBox "Done!"

Listing 2.4: Example script to change the password for the local Administrator account on each of your
computers.

You can see the FileSystemObject object in action; you learned about that object in the previous
chapter. As you can see, the script reads through an entire text file, which is represented by the
variable oTS. The object type for that is called a TextStream, because a text file is really just a
big stream of text characters. One of the properties of a TextStream object is AtEndOfStream,
which is set to the value True when the end of the file is reached. Thus, the script’s Do Until loop
will continue reading the text file until the end of the file is reached.

The ReadLine method of the TextStream is used to read a line of text and store it in the variable
sComputer. That variable, and ADSI’s WinNT provider, are used to connect to the specified
computer’s Administrator account. What comes back is a User object, and the script uses its
SetPassword method to set a new password. The script then calls SetInfo just to be sure
everything is saved, although technically with SetPassword, SetInfo isn’t necessary.

Chapter 2

39

Notice the On Error Resume Next object. This object tells VBScript to keep running the script
even if it encounters an error, which prevents VBScript from stopping the script if it tries to
connect to a computer that is currently turned off. Right after it tries to connect, the script checks
the value of the special built-in Err object. If the value of this object is zero, no error occurred
and the script can perform the password change. If Err is something other than zero, an error
occurred, and the script writes the offending computer’s name out to a second TextStream, which
is c:\skipped.txt. On Error Goto 0 tells VBScript to start paying attention to errors again.

Scripting Batch Operations
A batch operation is any operation that needs to run over and over. For example, creating one
hundred users in a script is a good example of a batch operation, and is certainly a task you
would rather script than perform manually. The first example I showed you, in which you use a
script to determine which users have a shared file open, is another batch operation.

On my Web site at http://www.ScriptingAnswers.com, I provide several scripts that perform
batch ADSI operations. One of the most useful is a generic script template that can be used to
perform some operation against every user and/or computer account in a domain (see Listing
2.5).
‘connect to the root of AD
Dim rootDSE, domainObject
Set rootDSE=GetObject("LDAP://RootDSE")
domainContainer = rootDSE.Get("defaultNamingContext")
Set oDomain = GetObject("LDAP://" & domainContainer)

‘start with the domain root
WorkWithObject(oDomain)

Sub WorkWithObject(oContainer)
 Dim oADObject
 For Each oADObject in oContainer
 Select Case oADObject.Class
 Case "user"
 ‘oADObject represents a USER object;
 ‘do something with it
 ‘** YOUR CODE HERE**
 Case "computer"
 ‘oADObject represents a COMPUTER object;
 ‘do something with it
 ‘** YOUR CODE HERE**
 Case "organizationalUnit" , "container"
 ‘oADObject is an OU or container...
 ‘go through its objects
 WorkWithObject(oADObject)
 End select
 Next
End Sub

Listing 2.5: A generic script template that you can use to perform an operation against every user and/or
computer account in a domain.

http://www.scriptinganswers.com/

Chapter 2

40

You can see where in Listing 2.5 you would insert your own code. You will use the variable
oADObject, which represents either a computer object or a user object. The current OU is always
represented by oContainer, and this script will iterate through each and every OU in the domain
and find every computer or user within.

For example, suppose your company moved its offices, and you wanted to write a script that
changed every user account’s ZIP code to 98053. You could use the template script with just a
couple of additional lines of code, as Listing 2.6 shows.
‘connect to the root of AD
Dim rootDSE, domainObject
Set rootDSE=GetObject("LDAP://RootDSE")
domainContainer = rootDSE.Get("defaultNamingContext")
Set oDomain = GetObject("LDAP://" & domainContainer)

‘start with the domain root
WorkWithObject(oDomain)

Sub WorkWithObject(oContainer)
 Dim oADObject
 For Each oADObject in oContainer
 Select Case oADObject.Class
 Case "user"
 ‘oADObject represents a USER object;
 ‘do something with it
 oADObject.Put "postalCode", "98053"
 oADObject.SetInfo
 Case "computer"
 ‘oADObject represents a COMPUTER object;
 ‘do something with it
 ‘** YOUR CODE HERE**
 Case "organizationalUnit" , "container"
 ‘oADObject is an OU or container...
 ‘go through its objects
 WorkWithObject(oADObject)
 End select
 Next
End Sub

Listing 2.6: Using the generic template as a starting point for a script to change users’ zip code.

I’ve boldfaced the two additional lines. Notice that I didn’t add any code to the section that deals
with computer accounts, meaning computers won’t be changed—only users.

Chapter 2

41

Another example is to create a text file listing each user and the user’s OU. Combining what you
learned about the FileSystemObject (in the previous chapter), you might modify the template
script as Listing 2.7 shows.
‘connect to the root of AD
Dim rootDSE, domainObject
Set rootDSE=GetObject("LDAP://RootDSE")
domainContainer = rootDSE.Get("defaultNamingContext")
Set oDomain = GetObject("LDAP://" & domainContainer)

‘create a file
Dim oFSO, oTS
Set oFSO = CreateObject("Scripting.FileSystemObject")
Set oTS = oFSO.CreateTextFile("c:\output.txt",True)

‘start with the domain root
WorkWithObject(oDomain)

oTS.Close
MsgBox "All done, boss."

Sub WorkWithObject(oContainer)
 Dim oADObject
 For Each oADObject in oContainer
 Select Case oADObject.Class
 Case "user"
 ‘oADObject represents a USER object;
 ‘do something with it
 oTS.WriteLine oADObject.Get("distinguishedName")
 Case "computer"
 ‘oADObject represents a COMPUTER object;
 ‘do something with it
 ‘** YOUR CODE HERE**
 Case "organizationalUnit" , "container"
 ‘oADObject is an OU or container...
 ‘go through its objects
 WorkWithObject(oADObject)
 End select
 Next
End Sub

Listing 2.7: Using the generic template as a starting point to list each user and user’s OU.

This script will write each user’s FQDN to a text file named c:\output.txt. Hopefully, this batch
template will prove useful in helping you write your own batch ADSI scripts.

Summary
In this chapter, I’ve introduced you to ADSI. You learned about two key providers, WinNT and
LDAP, and how to use them. In addition, we explored how to create new directory objects,
connect to services on remote machines, and more. ADSI is a large part of the two-part approach
to improved Windows administration through scripting. ADSI provides remote administration
capabilities, batch processing capabilities, and more. The other half is WMI, which I’ll cover in
the next chapter.

Chapter 3

42

Chapter 3: Working with WMI

Windows Management Instrumentation (WMI) is the most talked-about technology for
managing Windows computers since… well, since TCP/IP, probably. Unfortunately, WMI
comes across as the Windows equivalent to quantum physics—it seems complex, nobody’s
really explaining it clearly, and the documentation requires a few degrees to understand.

The goal of this chapter is to clear some of the fog. It will steer clear from the technically deep,
murky world of WMI and stick with the fun and easy-to-understand aspects of WMI. You’ll
learn enough to use WMI in administrative scripts, which is most likely what you care about
most.

Classes and Queries
Everything in WMI starts with classes. A class represents some bit of computer hardware, the
OS, an application, or something. A class is really an abstract description. For example, there is a
class called Win32_LogicalDisk, which describes a logical disk. It has properties such as
BlockSize, DriveType, FreeSpace, and FileSystem, which are all things you would naturally
associate with logical disks in Windows.

Each logical disk actually installed under Windows is referred to as an instance of the
Win32_LogicalDisk class. If you have a C drive and a D drive, that is two instances of the class.
Instances represent actual, living occurrences of the thing that a class describes. Although classes
are interesting, you will most often want to deal with the instances. Consider the following
example:

1. On a Windows XP machine, select the Start menu, click Run, type
wbemtest

and click OK. You should see the dialog box that Figure 3.1 shows.

Chapter 3

Figure 3.1: The WBEMTEST tool.

2. Click Connect. In the Namespace box, type
root\cimv2

as Figure 3.2 shows. This namespace is the basic WMI namespace that you’ll be using
most of the time. Click Connect.

43

Chapter 3

Figure 3.2: Connecting to the WMI namespace.

3. Back on the main dialog box, click Query. Select WQL for the query type, and enter
SELECT * FROM Win32_LogicalDisk

for the actual query, as Figure 3.3 shows. Click Apply.

Figure 3.3: Entering a WMI query.

4. You should get something like what Figure 3.4 shows, listing each instance that your
query returned.

44

Chapter 3

Figure 3.4: Reviewing instances returned by the query.

5. Double-click an instance, and you’ll see its properties, as Figure 3.5 shows. Notice the
useful information such as FileSystem and FreeSpace.

Figure 3.5: Reviewing an instance’s properties.

45

Chapter 3

46

Shazam, you’re a WMI guru! Well, almost. This example is meant to illustrate the relationship of
classes, instances, and properties, and how they’re used to deliver information about your
computer.

) The WBEMTEST tool is built right into Windows XP and WS2K3. The Web-Based Enterprise
Management (WBEM) is the standard that WMI implements. Common Information Model (CIM—as in
cimv2) is a way of standardizing class and property naming and relationships. The CIM was created
by the Desktop Management Task Force (DMTF), an industry task force that includes Microsoft.

Scripting and WMI
Although running queries with WBEMTEST is a great way to test WMI queries, there are more
useful WMI administrative applications. As an illustration, consider the Win23_LogicalDisk
class script that Listing 3.1 shows.
On Error Resume Next
Dim strComputer
Dim objWMIService
Dim propValue
Dim colItems

strComputer = “.”
Set objWMIService = GetObject(“winmgmts:\\” & _
 strComputer & “\root\cimv2”)
Set colItems = objWMIService.ExecQuery(“Select * from “ & _
 “Win32_LogicalDisk”,,48)
For Each objItem in colItems
 WScript.Echo “Access: “ & objItem.Access
 WScript.Echo “Availability: “ & objItem.Availability
 WScript.Echo “BlockSize: “ & objItem.BlockSize
 WScript.Echo “Caption: “ & objItem.Caption
 WScript.Echo “Compressed: “ & objItem.Compressed
 WScript.Echo “ConfigManagerErrorCode: “ & _
 objItem.ConfigManagerErrorCode
 WScript.Echo “ConfigManagerUserConfig: “ & _
 objItem.ConfigManagerUserConfig
 WScript.Echo “CreationClassName: “ & objItem.CreationClassName
 WScript.Echo “Description: “ & objItem.Description
 WScript.Echo “DeviceID: “ & objItem.DeviceID
 WScript.Echo “DriveType: “ & objItem.DriveType
 WScript.Echo “ErrorCleared: “ & objItem.ErrorCleared
 WScript.Echo “ErrorDescription: “ & objItem.ErrorDescription
 WScript.Echo “ErrorMethodology: “ & objItem.ErrorMethodology
 WScript.Echo “FileSystem: “ & objItem.FileSystem
 WScript.Echo “FreeSpace: “ & objItem.FreeSpace
 WScript.Echo “InstallDate: “ & objItem.InstallDate
 WScript.Echo “LastErrorCode: “ & objItem.LastErrorCode
 WScript.Echo “MaximumComponentLength: “ & _
 objItem.MaximumComponentLength
 WScript.Echo “MediaType: “ & objItem.MediaType
 WScript.Echo “Name: “ & objItem.Name
 WScript.Echo “NumberOfBlocks: “ & objItem.NumberOfBlocks
 WScript.Echo “PNPDeviceID: “ & objItem.PNPDeviceID

 for each propValue in objItem.PowerManagementCapabilities

Chapter 3

47

 WScript.Echo “PowerManagementCapabilities: “ & _
 propValue
 next

 WScript.Echo “PowerManagementSupported: “ & _
 objItem.PowerManagementSupported
 WScript.Echo “ProviderName: “ & objItem.ProviderName
 WScript.Echo “Purpose: “ & objItem.Purpose
 WScript.Echo “QuotasDisabled: “ & objItem.QuotasDisabled
 WScript.Echo “QuotasIncomplete: “ & objItem.QuotasIncomplete
 WScript.Echo “QuotasRebuilding: “ & objItem.QuotasRebuilding
 WScript.Echo “Size: “ & objItem.Size
 WScript.Echo “Status: “ & objItem.Status
 WScript.Echo “StatusInfo: “ & objItem.StatusInfo
 WScript.Echo “SupportsDiskQuotas: “ & objItem.SupportsDiskQuotas
 WScript.Echo “SupportsFileBasedCompression: “ & _
 objItem.SupportsFileBasedCompression
 WScript.Echo “SystemCreationClassName: “ & _
 objItem.SystemCreationClassName
 WScript.Echo “SystemName: “ & objItem.SystemName
 WScript.Echo “VolumeDirty: “ & objItem.VolumeDirty
 WScript.Echo “VolumeName: “ & objItem.VolumeName
 WScript.Echo “VolumeSerialNumber: “ & objItem.VolumeSerialNumber
Next

Listing 3.1: Example WMI script that involves the Win23_LogicalDisk.

� The script that Listing 3.1 shows was produced by the WMI Wizard of the PrimalScript script editor
(see http://www.primalscript.com for details). The helpful Scripting Guys at Microsoft provide a free
WMI Scriptomatic that is similar to the WMI Wizard in PrimalScript; you can download this
Scriptomatic from http://www.microsoft.com/technet/community/scriptcenter/tools/wmimatic.mspx.

The script in Listing 3.1 begins by declaring a few variables. The meat of the script is only a few
lines long:

strComputer = “.”

Set objWMIService = GetObject(“winmgmts:\\” & _

 strComputer & “\root\cimv2”)

Set colItems = objWMIService.ExecQuery(“Select * from “ & _

 “Win32_LogicalDisk”,,48)

These lines set a variable named strComputer equal to “.”, which happens to be the name of the
local computer. You could set this variable to another computer name to pull this information
from a remote machine.

Next, the script uses the Set keyword and the GetObject() function to retrieve an object reference
and assign it to the variable objWMIService, which is exactly how ADSI works (as you
remember from the previous chapter). The object being retrieved is the WMI Service, a
background service running on all Win2K and later machines (and on NT machines on which
WMI has been installed). The computer name as well as the namespace to connect to—
root\cimv2—are passed as part of the GetObject() method.

http://www.primalscript.com/
http://www.microsoft.com/technet/community/scriptcenter/tools/wmimatic.mspx

Chapter 3

48

Finally, the script uses the ExecQuery method to ask the WMI Service to execute a query. The
example query should look familiar: it is the same one used in the WBEMTEST example earlier.
The variable colItems, then, will contain a collection of instances, just as Figure 3.4 displays a
collection of instances. The last part of the script uses a For Each…Next loop to go through each
item (instance) in the collection, displaying its properties.

� By the way, running this script under CScript.exe, rather than WScript.exe, is more efficient. The
reason is that the WScript.Echo statements, under WScript, produce a lot of message boxes, which
require you to click OK in order to continue. CScript interprets WScript.Echo as simple command-line
output, which doesn’t require interaction in order to continue.

There’s No One, Right Way
There are many ways to connect to WMI. The GetObject() method, used with the winmgmts://
moniker, as it’s called, is a popular way and you’ll see it in a lot of examples. One of the reasons
it’s popular is that it makes it relatively easy to play funky games with security.

By default, a WMI query such as the previous example script connects to the WMI Service,
which runs under the LocalSystem account. Thus, queries get executed as LocalSystem, which
might not always be what you want (because, for example, LocalSystem isn’t allowed to perform
a direct shutdown of a computer).

Suppose you’re logged on to ComputerA as a Domain Admin, and you want to shut down
ComputerB, which is a domain member. You’re an administrator on ComputerB, so you’re
allowed to do so; what you need WMI to do is impersonate your credentials for the shutdown
task. The winmgmts:// moniker provides this capability. Listing 3.2 provides an example.
strComputer = “computerb”

Set objWMIService = GetObject(“winmgmts:” & _
 “{impersonationLevel=impersonate,(Shutdown)}!\\” & _
 strComputer & “\root\cimv2”)

Set colOperatingSystems = objWMIService.ExecQuery _
 (“Select * from Win32_OperatingSystem”)

For Each objOperatingSystem in colOperatingSystems
 ObjOperatingSystem.Reboot()
Next

Listing 3.2: An example script that uses the winmgmts:// moniker.

� If you read this script carefully, you’ll notice that it appears to be issuing a Reboot() command to
multiple instances of Win32_OperatingSystem, as if one computer could actually contain multiple
running instances of Windows. Today, computers can’t, but someday they might; WMI is built to
recognize the existence of multiple active OSs; thus, querying Win32_OperatingSystem could, in
theory, return multiple instances.

Chapter 3

49

Notice that some extra text has been tacked into the winmgmts:\\ connection. The complete
query is

winmgmts:{impersonationLevel=impersonate,(Shutdown)}!\\computerb\
root\cimv2

This query tells WMI to impersonate you for the task of shutting down the computer; WMI will
try to acquire the necessary permissions on the remote machine and will return an error if it
can’t.

Alternative Credentials
What the winmgmts://: moniker isn’t so good at is providing alternative credentials; meaning
ones you’re not currently logged on with. In other words, suppose you’re logged onto
ComputerA as a mere mortal, and want to perform a Domain Admin-style action on ComputerB.
The winmgmts:// moniker can’t help, but there is another way.

The solution is to fire up a local DLL on the machine running the script. The DLL in question is
the WbemScripting.SWbemLocator object, which has the special powers necessary to create a
connection to a remote WMI Service and pass alternative credentials. Listing 3.3 provides an
example of how to do so.
Dim oLocator, oService
Set oLocator = CreateObject(“WbemScripting.SWbemLocator”)
Set oService = oLocator.ConnectServer(_
 “computerb”, “root\cimv2”, “Administrator”, “Password!”)
oService.Security_.impersonationlevel = 3
oService.Security_.Privileges.Add 18
oService.Security_.Privileges.Add 23

Dim oItem
For Each oItem in oService.InstancesOf(“Win32_OperatingSystem”)
 oItem.Reboot()
Next

Listing 3.3: Example script that uses the WbemScripting.SWbemLocator object.

This script does pretty much the same thing that the previous script does, except that this script
allows you to pass in alternative credentials. The Locator has a ConnectServer() method, which
accepts the server name, namespace, and credentials you want to use. The method returns a
reference to the remote WMI Service, which this script references with the variable oService.

The script also messes around with the oddly named Security_ property, which is actually the
SWbemSecurity object. One of its properties is impersonationlevel, which is how the WMI
Service is told to set an impersonation level. In other words, how should the service impersonate
the credentials you’ve passed along? There are a few values you can provide here:

• 1 means Anonymous, so the credentials you pass in are hidden—that is, not revealed to
WMI. WMI probably won’t be able to perform whatever you wanted it to with this value.

• 2 means Identify, meaning objects can query the credentials you pass in but not use them.
WMI will probably also not work at this level.

Chapter 3

50

• 3 means Impersonate, meaning objects can utilize the credentials you pass in. This value
is what WMI usually needs.

• 4 means Delegate, which on Win2K and later allows objects to allow other objects to use
the credentials you pass in. This value will work with WMI but is usually overkill and
may be a security risk.

The script then adds some privileges to the Security_ property’s Privileges object. Possible
values are:

• 3—Lock physical pages in memory

• 4—Increase the quota assigned to a process

• 5—Create a machine account

• 6—Act as part of the trusted computer base

• 7—Control and view audit messages; required for all tasks reserved for security operators

• 8—Take ownership of an object

• 9—Load or unload a device driver

• 10—Gather profiling information (performance counters) for the system

• 11—Modify system time

• 12—Gather profiling information for a single process

• 13—Increase base priority for a process

• 14—Create a paging file

• 15—Create a permanent object

• 16—Perform backup operations

• 17—Perform restore operations

• 18—Shut down the local system

• 19—Debug a process

• 20—Generate audit log entries

• 23—Shut down a system remotely

• 24—Remove computer from a docking station

• 25—Synchronize directory service data

• 26—Enable computer and user accounts for delegation

This script added both the local and remote shutdown permissions, allowing it to shut down
either the local system or a remote system.

Chapter 3

Credential Security
Hardcoding usernames and passwords into a script is a horrible, horrible idea. Scripts cannot be
reliably protected so that the credentials won’t be divulged to someone who shouldn’t have them.
An alternative is to have the script prompt for credentials using InputBox().

0 Microsoft provides a free Script Encoder, which is intended to hide the contents of your script from
prying eyes while still allowing the script to execute. This tool is not reliable enough to protect
hardcoded credentials. The encryption keys used by Script Encoder are well-known, and several
easily obtainable script decoders exist. Do not imagine for a moment that obscuring credentials with
the Script Encoder will protect them; “security through obscurity” is no security at all.

What to Do With WMI
As everything in WMI is based on classes, what you can do with WMI comes down to
memorizing every available class—except that there are hundreds of classes, and the number
grows with each new Microsoft product release. The best place to start to research what you can
do with WMI is the MSDN Library at http://msdn.microsoft.com/library. Browse to Setup and
System Administration, Windows Management Instrumentation, SDK Documentation, Windows
Management Instrumentation, WMI Reference, WMI Classes. This path changes often, so you
might need to perform a search.

You’ll find sections on Win32 classes, which are useful, and registry classes, which are also
useful. Figure 3.6, for example, shows the Win32_OperatingSystem class documentation. As you
can see, it lists all of the class’ properties as well as its four methods: Reboot, SetDateTime,
Shutdown, and Win32Shutdown.

Figure 3.6: Exploring the WMI documentation.

51

http://msdn.microsoft.com/library

Chapter 3

52

Given the documentation, you can start to see how all WMI scripts start to look alike. For
example, consider the script that Listing 3.4 shows, which writes out the current service pack
version of each computer in the domain (this script uses the template script used in Chapter 2).
‘connect to the root of AD
Dim rootDSE, domainObject
Set rootDSE=GetObject(“LDAP://RootDSE”)
domainContainer = rootDSE.Get(“defaultNamingContext”)
Set oDomain = GetObject(“LDAP://” & domainContainer)

Dim oFSO, oTS
Set oFSO = CreateObject(“Scripting.FileSystemObject”)
Set oTS = oFSO.CreateTextFile(“servicepacks.txt”, True)

‘start with the domain root
WorkWithObject(oDomain)

oTS.Close
MsgBox “Done!”

Sub WorkWithObject(oContainer)
 Dim oADObject
 For Each oADObject in oContainer
 Select Case oADObject.Class
 Case “user”
 ‘oADObject represents a USER object;
 ‘do something with it
 ‘** YOUR CODE HERE**
 Case “computer”
 strComputer = ADSObject.cn
 ‘oADObject represents a COMPUTER object;
 ‘do something with it
 ‘connect to the computer via WMI
 Set oWMIService = GetObject(“winmgmts:” _
 & “{impersonationLevel=impersonate}!\\” & _
 strComputer & “\root\cimv2”)

 ‘retrieve OS class
 Set oWindows = oWMIService.ExecQuery(“SELECT * “ & _
 “FROM Win32_OperatingSystem”)

 ‘output sp level
 For Each oOS in oWindows
 oTS.WriteLine oADObject.Name & “: “ & _
 oOS.Name & “ / “ & oOS.Version & “ SP” & _
 oOS.ServicePackMajorVersion & “.” & _
 oOS.ServicePackMinorVersion
 Next

 Case “organizationalUnit” , “container”
 ‘oADObject is an OU or container...
 ‘go through its objects
 WorkWithObject(oADObject)
 End select
 Next
End Sub

Listing 3.4: Example script that writes out the current service pack version of each computer in the domain.

Chapter 3

53

Suppose that you wanted to see how much free space was available on every computer’s disk
drives. A very similar script emerges; Listing 3.5 shows the new script with the few lines that
have been changed from the previous example script in boldface.
‘connect to the root of AD
Dim rootDSE, domainObject
Set rootDSE=GetObject(“LDAP://RootDSE”)
domainContainer = rootDSE.Get(“defaultNamingContext”)
Set oDomain = GetObject(“LDAP://” & domainContainer)

Dim oFSO, oTS
Set oFSO = CreateObject(“Scripting.FileSystemObject”)
Set oTS = oFSO.CreateTextFile(“diskspace.txt”, True)

‘start with the domain root
WorkWithObject(oDomain)

oTS.Close
MsgBox “Done!”

Sub WorkWithObject(oContainer)
 Dim oADObject
 For Each oADObject in oContainer
 Select Case oADObject.Class
 Case “user”
 ‘oADObject represents a USER object;
 ‘do something with it
 ‘** YOUR CODE HERE**
 Case “computer”
 strComputer = ADSObject.cn
 ‘oADObject represents a COMPUTER object;
 ‘do something with it
 ‘connect to the computer via WMI
 Set oWMIService = GetObject(“winmgmts:” _
 & “{impersonationLevel=impersonate}!\\” & _
 strComputer & “\root\cimv2”)

 ‘retrieve OS class
 Set oDisks = oWMIService.ExecQuery(“SELECT * “ & _
 “FROM Win32_LogicalDisk”)

 ‘output sp level
 For Each oDisk in oDisks
 oTS.WriteLine oADObject.Name & “: “ & _
 oDisk.Name & “ has “ & oDisk.FreeSpace & “ bytes free”
 Next

 Case “organizationalUnit” , “container”
 ‘oADObject is an OU or container...
 ‘go through its objects
 WorkWithObject(oADObject)
 End select
 Next
End Sub

Listing 3.5: Example script to see how much free space was available on every computer’s disk drives.

Chapter 3

54

Once you become accustomed to working with WMI, it all starts to look a lot alike. This
repetition is great because it means that the time you take to write one WMI-based script will
save you a lot of time the next time you need to write one.

WMI Scriptlets
At this point, you’re probably itching to see some more WMI in action. WMI can be useful for
querying information, changing settings, and performing actions such as restarting a computer.
The next few sections will provide scriptlets that demonstrate the possibilities. Keep in mind that
these may require some minor modifications—such as different server names—in order to run
properly in your environment; don’t try to cut and paste them and expect them to work right
away in every environment.

Managing Services
Services are something we would all just as soon forget about. They’re not readily managed from
a central location and they are difficult to manage on a server-by-server basis. VBScript can
help, as Listing 3.6 shows.
‘connect to the computer’s WMI provider
sComputer = “server1”
Set oWMIService = GetObject(“winmgmts:” _
 & “{impersonationLevel=impersonate}!\\” & _
 sComputer & “\root\cimv2”)

‘retrieve the MyApp service
Set oService = oWMIService.ExecQuery _
(“Select * from Win32_Service WHERE Name” & _
 “ = ‘myservice’”)

 ‘change the password
 errReturn = oService.Change(, , , , , , _
 , “NeWP@ss#0rD”)

Listing 3.6: An example script that helps in managing services.

This script connects to WMI on a server named Server1, using WMI impersonation to
impersonate the credentials of whoever is running the script. It executes a WMI query that is a
bit unlike any you’ve seen so far. Rather than querying every instance of Win32_Service, it
queries all instances whose Name property is myservice. You could make that Alerter,
Messenger, or some actual service name. The script then executes the service’s Change()
method, skipping the first seven parameters, which are things we don’t want to change right now,
and passes in a new password. This new password becomes the password that the service will
use to log on. This scriptlet is a great way to update a service to use a new password, making it
easier to regularly change service account passwords.

) If you get an error indicating that “Object doesn’t support this property or method: ‘oService.Change’,”
the odds are that oService isn’t set to an instance of the Win32_Service class. That can—and will—
happen if your query doesn’t specify a valid service name.

Chapter 3

55

Of course, this script only works against one computer; it would be more useful if it could run
against a list of computers running this particular service. Say, a text file with one computer
name per line. Listing 3.7 shows an example script that does so.
‘open a text file of computer names
Set oFSO = CreateObject(“Scripting.FileSystemObject”)
Set oTS = oFSO.OpenTextFile(“c:\computers.txt”)

Do Until oTS.AtEndOfStream

 ‘get computer name
 sComputer = oTS.ReadLine

 ‘connect to the computer’s WMI provider
 Set oWMIService = GetObject(“winmgmts:” _
 & “{impersonationLevel=impersonate}!\\” & _
 sComputer & “\root\cimv2”)

 ‘retrieve the MyApp service
 Set oService = oWMIService.ExecQuery _
 (“Select * from Win32_Service WHERE Name” & _
 “ = ‘myservice’”)

 ‘change the password
 errReturn = oService.Change(, , , , , , _
 , “NeWP@ss#0rD”)
Loop

oTS.Close

Listing 3.7: An example script that manages a list of computers running a particular service.

In Listing 3.7, the modified lines are highlighted in boldface so that you can see what a relatively
minor change this is. Want the script to provide feedback about what’s going on? You need to
make only one simple change, as Listing 3.8 shows.

‘open a text file of computer names
Set oFSO = CreateObject(“Scripting.FileSystemObject”)
Set oTS = oFSO.OpenTextFile(“c:\computers.txt”)

Do Until oTS.AtEndOfStream

 ‘get computer name
 sComputer = oTS.ReadLine

 ‘connect to the computer’s WMI provider
 Set oWMIService = GetObject(“winmgmts:” _
 & “{impersonationLevel=impersonate}!\\” & _
 sComputer & “\root\cimv2”)

 ‘retrieve the MyApp service
 Set oService = oWMIService.ExecQuery _
 (“Select * from Win32_Service WHERE Name” & _
 “ = ‘myservice’”)

 ‘change the password

Chapter 3

56

 errReturn = oService.Change(, , , , , , _
 , “NeWP@ss#0rD”)

 ‘message
 WScript.Echo “Changed “ & sComputer

Loop

oTS.Close

Listing 3.8: The same example script with a modification added to enable feedback.

What Happened to Dim?

The first chapter stated that the Dim statement was required to tell VBScript that you were planning on
using a particular variable. Well, “required” is a strong term. As you can see from the past few samples,
scripts run fine without it. The truth is that Dim is optional—you don’t have to tell VBScript up front. If
VBScript encounters a variable that it hasn’t seen before, it implicitly declares it for you, saving you time.
However, Dim is a useful tool that can prevent errors from being overlooked. Read the following script
sample carefully:

sComputer = InputBox(“Computer name?”)
sPassword = InputBox(“New password for service?”)
Set oWMIService = GetObject(“winmgmts:” _
 & “{impersonationLevel=impersonate}!\\” & _
 sComputer & “\root\cimv2”)
Set oService = oWMIService.ExecQuery _
 (“Select * from Win32_Service WHERE Name” & _
 “ = ‘myservice’”)

 ‘change the password
 errReturn = oService.Change(, , , , , , _
 , sPasswpd)

Spot the problem? The password you entered is stored in the variable sPassword, but you made a typo in
the last line and actually used the contents of variable sPasswpd to set the new password. VBScript
hasn’t seen sPasswpd before, so it initializes a new, empty variable, and now your service is screwed up.
To avoid such mistakes, use Dim:

Option Explicit
Dim sComputer, sPassword, oWMIService, oService
sComputer = InputBox(“Computer name?”)
sPassword = InputBox(“New password for service?”)
Set oWMIService = GetObject(“winmgmts:” _
 & “{impersonationLevel=impersonate}!\\” & _
 sComputer & “\root\cimv2”)
Set oService = oWMIService.ExecQuery _
 (“Select * from Win32_Service WHERE Name” & _
 “ = ‘myservice’”)

 ‘change the password
 errReturn = oService.Change(, , , , , , _
 , sPasswpd)

This modified script will result in an error on the last line of code because you didn’t declare sPasswpd.
The Option Explicit statement at the beginning of the script tells VBScript to disallow implicit variable
creation and to require variables to be announced via the Dim statement. Now you’ll spot your typo
immediately, thanks to the error, without screwing up any of your service settings.

Chapter 3

57

Now that you have this service-changing example in hand, the next thing you should do is scurry
into the WMI documentation to find out what else this script might be able to do. I’ve already
mentioned that the Win32_Service class’ Change() method has at least seven other arguments:
What do they do?

According to the documentation, I can use this method to change:

• The display name

• The path name

• The service type

• The error control type

• The start mode

• Whether desktop interaction is allowed

• The login account

• The login password

• The order in which the service should load

• The dependencies the service has

Whenever you get a WMI example, spend some time exploring what else you can do with the
objects, classes, or whatever else you’ve been introduced to. It’s a great way not only to
accomplish a current task but also to incrementally learn more and more about VBScript and
WMI.

Archive Security Logs
Still waiting for the Microsoft Audit Collection Server (MACS) to show up on your network?
Listing 3.9 provides a handy script that will read a text file of computer names, connect to each
one, archive its security log to a local file (on the computer running the script, that is), then clear
the log to make room for new entries.

Chapter 3

58

‘Create a FileSystemObject
Set oFS = CreateObject(“Scripting.FileSystemObject”)

‘Open a text file of computer names
‘with one computer name per line
Set oTS = oFS.OpenTextFile(“c:\computers.txt”)

‘go through the text file
Do Until oTS.AtEndOfStream

 ‘get next computer
 sComputer = oTS.ReadLine

 ‘connect to the WMI provider
 Set oWMIService = GetObject(“winmgmts:” _
 & “{impersonationLevel=impersonate,(Backup,Security)}!\\” & _
 sComputer & “\root\cimv2”)

 ‘query the Security logs
 Set cLogFiles = oWMIService.ExecQuery _
 (“Select * from Win32_NTEventLogFile where “ & _
 “LogFileName=‘Security’”)

 ‘go through the collection of logs
 For Each oLogfile in cLogFiles

 ‘back up the log to a file
 errBackupLog = oLogFile.BackupEventLog _
 (“c:\logfiles\” & sComputer & “\” & Date() & “.evt”)

 ‘see if an error occurred
 If errBackupLog <> 0 Then

 ‘one did - display an error
 Wscript.Echo “Couldn’t get log from “ & sComputer

 Else

 ‘no error - safe to clear the Log
 oLogFile.ClearEventLog()

 End If
 Next
Loop

‘close the input file
oTS.Close

Listing 3.9: An example script that reads a text file of computer names, connects to each one, archives its
security log, then clears the log to make room for new entries.

Chapter 3

59

Notice the impersonation permission being requested: Backup,Security. This permission is
necessary to archive security logs. The script selects every instance of Win32_NTEventLogFile
where the name of the log file (the LogFileName property) is Security. It’s theoretically possible
for that query to return multiple instances of Win32_NTEventLogFile, so you must assume the
result of the query will be a collection. Therefore, it makes sense to use a For Each…Next
construct to loop through each instance one at a time.

) If you are receiving access denied errors, your system may be configured to require other special
permissions. Generally, the Backup permission suffices for log files, although the Security log in
particular often requires the additional Security permission. Your system may be configured to require
additional permissions.

Each instance’s BackupEventLog() method is called. The only argument this method requires is
a filename, so I built one that includes the remote computer’s name, along with the current date,
for easier identification later. The method returns a value greater than zero if the backup didn’t
work; specifically, it returns the value 8 if permission is denied, 21 if the archive path is invalid,
and 183 if the archive path already exists.

If the value returned is zero, the script clears the log using the ClearEventLog() method; if not,
the script outputs an error message indicating that the log couldn’t be backed up. Note that in
some instances, you may need to pass the path and filename of the event log as an argument of
ClearEventLog(); if this is necessary, you can modify the script as follows:

 ‘no error - safe to clear the Log

 oLogFile.ClearEventLog(oLogFile.Path & oLogFile.FileName)

Extended WMI
Another great way to fiddle with WMI and see what it can do is by using the Tweakomatic,
another tool from the Microsoft Scripting Guys. You can access this tool at
http://www.microsoft.com/technet/community/scriptcenter/tools/twkmatic.mspx. For example, if
I wanted to modify a computer’s screen saver to require a password, the Tweakomatic tells me
that I could use the short script that Listing 3.10 shows.
HKEY_CURRENT_USER = &H80000001
strComputer = “.”
Set objReg = GetObject(“winmgmts:\\” & _
 strComputer & “\root\default:StdRegProv”)
strKeyPath = “Control Panel\Desktop”
objReg.CreateKey HKEY_CURRENT_USER, strKeyPath
ValueName = “ScreenSaverIsSecure”
strValue = “1”
objReg.SetStringValue HKEY_CURRENT_USER, _
 strKeyPath, ValueName, strValue

Listing 3.10: An example Tweakomatic script to modify a computer’s screen saver to require a password.

Notice anything different about the WMI query that Listing 3.10 shows? The difference is in the
WMI query, which uses root\default:StdRegProv rather than root\cimv2. What’s going on there?

http://www.microsoft.com/technet/community/scriptcenter/tools/twkmatic.mspx

Chapter 3

60

This is where WMI and quantum physics really start to look interchangeable. Microsoft only
crams certain WMI classes into the root\cimv2 namespace. Other WMI classes get crammed
elsewhere. In this example, it’s the Standard Registry Provider that the script is working with, so
you must to connect to its namespace. Exchange Server 2000 and Exchange Server 2003 install
WMI classes, and they use the root\cimv2\applications\exchange namespace. Or they did. In
Exchange Server 2000 SP2 and later, Microsoft started the root\cimv2\applications\exchangev2
namespace, which includes providers named ExchangeDsAccessProvider and
ExchangeMessageTrackingProvider.

IIS gets in on the game, too, with the MicrosoftIISv2 namespace (root\microsoftiisv2). SQL
Server 2000 has the root\MicrosoftSQLServer namespace. Other Microsoft products add WMI
classes, too, and it’s cursedly difficult to find them because Microsoft doesn’t document them in
one convenient place. BizTalk Server uses root\MicrosoftBizTalkServer, for example, and I
don’t know where you would dig up that information without a search. There is a WMI
namespace for SNMP providers, allowing you to interact with the providers via WMI. You can
install and uninstall applications using the Windows Installer namespace, and there is even a
namespace for performance counters, so you can write scripts that retrieve performance
information. Unfortunately, WMI is so broad in scope that it would be impossible to address
them all in this guide.

You can use the WBEMTEST tool, or even the WMI Scriptomatic, to browse the available
classes (to a point; they don’t query every available namespace). But those tools will only list
classes available on the local machine; thus, if you want to see things like Exchange classes, you
have to run the tool on a machine that contains those classes—namely, an Exchange Server
system.

If you’re eager to see what namespaces are available on a particular computer, run the following
script (I recommend running it under CScript because it outputs a lot of information):

sComputer = “.”

Call EnumerateNamespaces(“root”)

Sub EnumerateNamespaces(sNamespace)

 WScript.Echo sNamespace

 Set oWMIService = GetObject(“winmgmts:\\” & _

 sComputer & “\” & sNamespace)

 Set cNamespaces = oWMIService.InstancesOf(“__NAMESPACE”)

 For Each oNamespace In cNamespaces

 Call EnumerateNamespaces(sNamespace & _

 “\” & oNamespace.Name)

 Next

End Sub

Chapter 3

61

My WS2K3 machine returns the following interesting entries, giving you some idea of the scope
WMI encompasses:

• Root\SECURITY—for working with security

• Root\perfmon—for working with performance counters

• Root\RSOP—for working with Resultant Set of Policy (RSOP) in Group Policy

• Root\snmp—for working with SNMP

• Root\MSCluster—for working with Microsoft Cluster Server

• Root\cimv2—for working with core Win32 classes

• Root\Applications\MicrosoftIE—for working with Internet Explorer

• Root\MicrosoftActiveDirectory—for working with Active Directory

• Root\MicrosoftIISv2—for working with IIS 6.0

• Root\Policy—for working with policies

• Root\MicrosoftDNS—for working with DNS

• Root\MicrosoftNLB—for working with Network Load Balancing

• Root\registry—for working with the registry

If you repeat this chapter’s very first exercise, using WBEMTEST, and substitute these
namespace for root\cimv2, you’ll be able to check out the classes in these namespaces. Instead of
clicking Query, click Enum Classes. Leave the Superclass name blank, click Recursive, and click
OK. You should get a list of all available classes in the namespace.

Summary
WMI, ADSI, and VBScript work together to provide a well-rounded, robust set of administrative
tools. Between them, there is not much you can’t do with regard to remote management.
However, there are some advanced techniques that can make scripting a bit more powerful, and
I’ll take a look at some of them in the next chapter.

Chapter 4

Chapter 4: Advanced Scripting

Aside from the amazing things you can do with WMI and ADSI, scripting can provide a lot of
additional functionality for making administration easier. For example, you can work with
databases in a script, which gives you the ability to log WMI information into a SQL Server or
Access database. In addition, the ability to run scripts on remote machines lets you extend your
administrative reach and scope across your entire enterprise. In this chapter, I’ll touch on these
and other advanced topics, giving you a head start toward making your scripts more powerful
and flexible.

Remote Scripting
We’ve already explored a form of remote scripting—running a script that affects remote
computers from your computer. WMI and ADSI, in particular, are useful for this type of remote
scripting. As Figure 4.1 illustrates, the script executes on one computer but performs operations
against one or more remote computers. Typically, the script executes under the authority of the
user account running the script. However, some technologies—including WMI—provide the
means to specify alternative credentials, which the script can use when connecting to remote
machines.

Figure 4.1: Basic remote scripting.

Another type of remote scripting is made possible by using the WshController object. As Figure
4.2 shows, this object actually copies a script from your machine to the remote machines, which
execute the script independently. WshController allows you to monitor the remote script
execution for errors and completion.

62

Chapter 4

Figure 4.2: Using the WshController object for remote scripting.

The WshController Object
WshController is created just like any other object: by using the CreateObject() function.
WshController has just one method, CreateScript(). This method returns a WshRemote object,
which allows you to interact with a remote script. Suppose you have a script named C:\Script.vbs
on your local machine that you want to run on a computer named ClientB. You would use a
script similar to the following example:

Dim oController, oRemote

Set oController = WScript.CreateObject(“WSHController”)

Set oRemote = oController.CreateScript(“c:\Script.vbs”, _

 “ClientB”)

oRemote.Execute

� Remote scripting is available only in the latest version of the Windows Script Host (WSH), version
5.6, and on NT 4.0 Service Pack 3 (SP3) and later versions of Windows. In general, you must be a
local administrator on the remote machine, and remote WSH must be enabled in the registry of the
remote machine. You can do so by navigating the registry to
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows Script Host\Settings, and adding a key
named Remote as a REG_SZ (String) value. Set the value to 1 to enable remote WSH and 0 to
disable it. It’s disabled by default for security reasons. WSH 5.6 must be installed on both the
machine sending the script and the machine that is to run it (the remote machine).

Not too difficult. Of course, with just that code, you won’t be able to track the remote script’s
status. Add the following to provide tracking:

Do While oRemote.Status = 0

 WScript.Sleep 100

Loop

MsgBox “Remote execution completed with status “ & oRemote.Status

63

Chapter 4

64

The Status property can be either 0 or 1: 0 means the remote script is still running, and 1 means it
has completed. The WshRemote object has two methods: Execute and Terminate. We’ve explore
how the Execute method is used. The Terminate method can be used to end a still-running script,
and this method requires no parameters.

WshRemote also provides a child object, WshRemoteError. This child object provides access to
errors occurring in remote scripts. Using it is a bit more complicated and requires the use of the
default WScript object’s ConnectObject() method.

WScript.ConnectObject
You’ve already seen how the intrinsic WScript object’s CreateObject() and GetObject() methods
are used. The ConnectObject method is similar to GetObject() in that it deals with a remote
object. Rather than retrieving a reference to a remote object, however, ConnectObject allows you
to synchronize object events. As we’ve previously explored, objects have three basic members:

• Properties, which describe the object and modify its behavior

• Methods, which make the object perform some action

• Collections, which provide access to child objects

There is actually one other type of member: an event. Events provide an object with the means to
inform your script when something occurs. For example, buttons in the Windows user interface
(UI) fire an event when someone clicks them. This event being fired tells the underlying code
that the button was clicked, allowing the underlying code to take whatever action it’s supposed to
take when the button is clicked. The following example demonstrates this concept:

Dim oController, oRemoteScript

Set oController = WScript.CreateObject(“WSHController”)

Set oRemoteScript = oController.CreateScript(“me.vbs”,”Server1”)

WScript.ConnectObject oRemoteScript, “remote_”

oRemoteScript.Execute

Do While oRemoteScript.Status <> 2

 WScript.Sleep 100

Loop

WScript.DisconnectObject oRemoteScript

Chapter 4

65

This example script closely follows the previous example to create a remote script, execute it,
and wait until it finishes. But this example adds the ConnectObject method to synchronize the
remote script’s events with this script’s events. Any remote events will be fired back to this
script. This script needs to contain a subroutine, or sub, prefixed with “remote_”, because that is
what the script told ConnectObject to look for when events occur. You could add the following:

Sub remote_Error

 Dim oError

 Set oError = oRemoteScript.Error

 WScript.Echo “Error #” & oError.Number

 WScript.Echo “At line “ & oError.Line

 WScript.Echo oError.Description

 WScript.Quit

End Sub

The DisconnectObject method is used when the script is over to cancel the connection between
the remote script and the script shown here.

Remote Scripting Limitations
Remote scripting does have some limitations. Remote scripts shouldn’t use InputBox(),
MsgBox(), or WScript.Echo to produce output because remote scripts aren’t given an interactive
desktop to work with. Any output from a remote script will need to be written to a text file on a
file server or some other central location where you can retrieve it and look it over.

Remote scripts also have some security limitations. Generally speaking, they’ll run under the
context of the LocalSystem account, although that does vary between Windows versions and
may change in service packs for Windows XP and later versions to a less-powerful account.
Also, because scripts run under that context, they may have difficultly accessing anything in the
local profile of a user. For example, accessing registry keys in HKEY_CURRENT_USER won’t
necessarily connect to the currently logged on user (because the script isn’t running under that
user’s context), which can create unexpected results for your scripts. If you absolutely need a
script to run as the logged on user, assign the script as a logon script.

Chapter 4

Database Scripting
Scripting is completely compatible with Microsoft’s universal data access technology, called
ActiveX Data Objects (ADO). As the name implies, ADO utilizes objects, so your scripts will
use CreateObject() to instantiate these objects and assign them to variables.

Making Data Connections
ADO uses a Connection object to provide a connection to data sources, such as Access
databases, SQL Server databases, Excel spreadsheets, and more. Creating the Connection object
is simple:

Set oConn = CreateObject(“ADODB.Connection”)

You have a couple of options, however, for specifying the data to which you want to connect.
The easiest—although, as I’ll explain, not quite the most efficient—is to use an Open Database
Connectivity (ODBC) Data Source Name (DSN). Windows XP and later computers provide an
ODBC Control Panel in the Administrative Tools group; other versions of Windows provide this
option from the Control Panel instead. Figure 4.3 shows the ODBC application and a list of
configured DSNs for the current user (System DSNs are available for all users of the computer).

Figure 4.3: The ODBC panel.

66

Chapter 4

67

For example, to add a DSN for an Access database, click Add, and select the Access driver from
the list. Specify a name for your data source (such as “MyData”), and click Select to specify an
Access MDB database. Once the DSN is created, you add code to open that DSN in your script:

oConn.Open “MyData”

There are a couple of downsides to using DSNs:

• They must be individually configured on each computer on which the script will run

• They access data through the older ODBC software in Windows—although this access
method won’t create a performance problem for most scripts, it isn’t the most efficient
way; you’re effectively asking ADO to access data by using a technology that ADO itself
(actually, the underlying OLE DB technology) was supposed to supersede

An alternative method is to use a native call and tell ADO which driver to use, what data to open,
and so forth, all using a connection string. Sample drivers (or providers, in ADO terminology)
include:

• Microsoft.Jet.OLEDB.4.0 (Access)

• SQLOLEDB (SQL Server)

• ADSDSOObject (Active Directory—AD)

Connection strings look a bit different depending on the driver used, because each driver requires
slightly different information, for example:

• For an Access database: “Provider=Microsoft.Jet.OLEDB.4.0; Data
Source=folder\file.mdb”

• For a SQL Server database: “Provider=SQLOLEDB; Data Source=server; Initial
Catalog=database; User ID=user; Password=password”

• For AD: “Provider=ADSDSOObject; User ID=user; Password=password”

Thus, using this method, you would open the connection as follows for an Access database:
oConn.Open “Provider=Microsoft.Jet.OLEDB.4.0; “ & _

 “Data Source=c:\databases\mydatabase.mdb”

This part of the process is the most difficult part of working with ADO. Once the connection is
open, you can simply start querying and modifying data.

A Quick Database Lesson

Data in a database—whether it’s an Excel spreadsheet or a SQL Server database—is organized into
several logical components. A table is the main logical unit. Databases can consist of multiple tables. In
an Excel file, each worksheet is treated as an individual table.

A row or entity or record contains a single entry in a table (for example, rows in an Excel spreadsheet or
rows in an Access database table). A column or domain or field represents a single piece of information.
For example, a column in an Excel spreadsheet might contain user names, and another column contains
domain names for those users. ADO works with rows and columns to provide you with access to the data
in a database.

Chapter 4

Querying and Displaying Data
You’ll probably find it easier to query data by using SQL-style queries, even when you’re not
accessing a SQL Server database; ADO understands the SQL query language and makes it pretty
easy to use SQL with any type of data source. The basic syntax for a query looks like this:

SELECT column, column, column

FROM table
WHERE comparison

For example, suppose you have an Excel spreadsheet like the one that Figure 4.4 shows.

Figure 4.4: Example Excel spreadsheet.

68

Chapter 4

69

The table name in this case is Sheet1$ (Excel adds a dollar sign to the end of the worksheet
name). There are three columns: UserID, FullName, and Description.

) In general, it’s easiest to have table and column names that don’t contain spaces or punctuation.
However, if they do, you need to surround them in square brackets: [User ID], for example.

Suppose you wanted to query the UserID for every row in the table:
SELECT UserID FROM [Sheet1$]

If you only wanted the UserID of users whose description was “Writer,” you would use this:
SELECT UserID FROM [Sheet1$] WHERE Description = ‘Writer’

The results of your query are a set of rows—or as database people like to say, a set of records. In
ADO parlance, that is a recordset, and it’s represented by a Recordset object. To implement your
query in VBScript, assuming a Connection object named oConn had been created and opened:

Set oRS = oConn.Execute(“SELECT UserID FROM [Sheet1$]”)

That leaves you with a Recordset object containing the specified rows and columns; in this case,
it would contain seven rows and one column (assuming we’re querying the Excel spreadsheet I
showed you).

You should first determine whether your recordset contains anything. Recordset objects contain
an internal pointer, which points to the current record. The objects also provide methods for
moving the pointer to the next record, and properties for telling you when you’ve moved the
pointer to the beginning of the file (recordset) or the end of the file (recordset). Those two
properties, BOF (for the beginning of the file) and EOF (for the end of the file), will both be
True for an empty recordset. So you can use the following comparison:

If oRS.EOF and oRS.BOF Then

 ‘no records

Else

 ‘records

End If

You can access the data in the recordset by simply referring to the column names. For example,
the following will display the User ID for the current record:

WScript.Echo oRS(“UserID”)

Finally, you can move to the next record with this:
oRS.MoveNext

� In case you’re wondering, there is a MovePrevious method. However, the default type of recordset
returned by the Connection object’s Execute() method is an efficient forward-only recordset, meaning
that once you’ve used MoveNext to advance to the next record, you can’t move back.

 Covering the vast complexity and flexibility of the entire set of ADO objects is a bit beyond the scope
of this guide. However, you can check out the ADO documentation in the MSDN Library at
http://www.microsoft.com/msdn; just look for the Data Access category.

http://www.microsoft.com/msdn

Chapter 4

70

Thus, w tputs all of the user IDs by using a DSN named “Excel,” might look
like thi

D FROM [Sheet1$]”)

.EOF and oRS.BOF Then

ecords returned”

F

pt.Echo “UserID: “ & oRS(“UserID”)

veNext

oop

e the recordset and connection when the script

h

serID, FullName, and
earlier. The script creates passwords for the

s to a text file for distribution.

riting a script that ou
s:
Dim oConn, oRS

Set oConn = CreateObject(“ADODB.Connection”)

oConn.Open “Excel”

Set oRS = oConn.Execute(“SELECT UserI

If oRS

 WScript.Echo “No r

Else

 Do Until oRS.EO

 WScri

 oRS.Mo

 L

End If

oRS.Close

oConn.Close

Notice that I threw in two lines of code to clos
ends. You don’t strictly need to do so because VBScript will more or less do it automatically
when the script ends, but it’s a good practice.

As an extended example, the script that Listing 4.1 shows queries a DSN named “Excel” (whic
is assumed to be an Excel spreadsheet) and creates new users in an NT or AD domain. This
script assumes that the Excel spreadsheet contains columns named U
Description, much like the example I showed you
new users, and writes those password
‘ PART 1: Open up the Excel spreadsheet
‘ using ActiveX Data Objects
Dim oCN
Set oCN = CreateObject(“ADODB.Connection”)
oCN.Open “Excel”

Dim oRS
Set oRS = oCN.Execute(“SELECT * FROM [Sheet1$]”)

‘ PART 2: Get a reference to the
‘ Windows NT domain using ADSI
Dim oDomain
Set oDomain = GetObject(“WinNT://DOMAIN”)

‘ PART 3: Open an output text file
‘ to store users’ initial passwords
Dim oFSO, oTS
Set oFSO = CreateObject(“Scripting.FileSystemObject”)

Chapter 4

71

Set oTS = oFSO.CreateTextFile(“c:\passwords.txt”,True)

‘ PART 4: For each record in the recordset,
‘ add the user, set the correct user
‘ properties, and add the user to the
‘ appropriate groups

‘ create the necessary variables
Dim sUserID, sFullName, sDescription
Dim sPassword, oUserAcct

‘ now go through the recordset one
‘ row at a time
Do Until oRS.EOF

 ‘ get the user information from this row
 sUserID = oRS(“UserID”)
 sFullName = oRS(“FullName”)
 sDescription = oRS(“Description”)

 ‘ make up a new password
 sPassword = Left(sUserID,2) & DatePart(“n”,Time) & _
 DatePart(“y”,Date) & DatePart(“s”,Time)

 ‘ create the user account
 Set oUserAcct = oDomain.Create(“user”,sUserID)

 ‘ set account properties
 oUserAcct.SetPassword sPassword
 oUserAcct.FullName = sFullName
 oUserAcct.Description = sDescription

 ‘ save the account
 oUserAcct.SetInfo

 ‘ write password to file
 oTS.Write sUserID & “,” & sPassword & vbCrLf

 ‘ PART 5: All done!
 ‘ release the user account
 Set oUserAcct = Nothing

 ‘ move to the next row in the recordset
 oRS.MoveNext

Loop

‘ PART 6: Final clean up, close down
oRS.Close
oTS.Close
WScript.Echo “Passwords have been written to c:\passwords.txt.”

Listing 4.1: An example script that queries a DSN named “Excel.”

Chapter 4

72

� Note that you’ll need to insert the correct domain name, which I’ve boldfaced, in order for the script to
work. In an AD domain, users will be created in the default Users container.

Modifying Data
ADO isn’t limited to pulling data from a database; it can modify and add information, too. There
are a couple of ways to do so. The most straightforward, perhaps, is to issue a data modification
query, me method that
returns ELEC with a data
doesn’t return anything. Here’s how it works:

ia”

 let’s take the previous example, which creates user accounts and writes their
 additional column named Password, we

sswords right into the spreadsheet instead of into a separate
ed in strikethrough

using the Connection object’s Execute method. This method is the sa
Recordset object when used with a S T query; modification query, it a

‘Delete rows

oConn.Execute “DELETE FROM table WHERE criteria”

‘Change rows

oConn.Execute “UPDATE table SET column=value WHERE criter

‘Add rows

oConn.Execute “INSERT INTO table (column, column) “ & _

 “VALUES (‘value’, ‘value’)”

For example,
passwords to a file. If the Excel spreadsheet had an
could modify the script to save the pa
file. Listing 4.2 shows the lines of code that get remov , and the changed lines

 Open up the Excel spreadsheet

in boldface.
‘ PART 1:
‘ using ActiveX Data Objects
Dim oCN
Set oCN = CreateObject(“ADODB.Connection”)
oCN.Open “Excel”

Dim oRS
Set oRS = oCN.Execute(“SELECT * FROM [Sheet1$]”)

‘ PART 2: Get a reference to the
‘ Windows NT domain using ADSI
Dim oDomain
Set oDomain = GetObject(“WinNT://DOMAIN”)

‘ PART 3: Open an output text file
‘ to store users’ initial passwords
Dim oFSO, oTS
Set oFSO = CreateObject(“Scripting.FileSystemObject”)
Set oTS = oFSO.CreateTextFile(“c:\passwords.txt”,True)

‘ PART 4: For each record in the recordset,

Chapter 4

73

‘ add the user, set the correct user
‘ properties, and add the user to the
‘ appropriate groups

‘ create the necessary variables
Dim sUserID, sFullName, sDescription
Dim sPassword, oUserAcct

‘ now go through the recordset one
‘ row at a time
Do Until oRS.EOF

 ‘ get the user information from this row
 sUserID = oRS(“UserID”)
 sFullName = oRS(“FullName”)
 sDescription = oRS(“Description”)

 ‘ make up a new password
 sPassword = Left(sUserID,2) & DatePart(“n”,Time) & _
 DatePart(“y”,Date) & DatePart(“s”,Time)

 ‘ create the user account
 Set oUserAcct = oDomain.Create(“user”,sUserID)

 ‘ set account properties
 oUserAcct.SetPassword sPassword
 oUserAcct.FullName = sFullName
 oUserAcct.Description = sDescription

 ‘ save the account
 oUserAcct.SetInfo

 ‘ write password to database
 oCN.Execute “UPDATE [Sheet1$] SET Password = ‘“ & _
 sPassword & “‘ WHERE UserID = ‘“ & sUserID & “‘“

 ‘ PART 5: All done!
 ‘ release the user account
 Set oUserAcct = Nothing

 ‘ move to the next row in the recordset
 oRS.MoveNext

Loop

‘ PART 6: Final clean up, close down
oRS.Close
oTS.Close
WScript.Echo “Passwords have been written to the database.”

Listing 4.2: Example script that writes passwords to an existing Excel spreadsheet rather than a separate file.

sing a Recordset object: Simply change the
 them. When you’re finished, use the Recordset’s

in, modified to use this new method.

There is another way to change data
milar to the way you read data from

 when you’re u
columns si
Update method. Listing 4.3 shows the entire script aga

Chapter 4

74

‘ PART 1: Open up the Excel spreadsheet
‘ using ActiveX Data Objects
Dim oCN
Set oCN = CreateObject(“ADODB.Connection”)
oCN.Open “Excel”

Dim oRS
Set oRS = oCN.Execute(“SELECT * FROM [Sheet1$]”)

‘ PART 2: Get a reference to the
‘ Windows NT domain using ADSI
Dim oDomain
Set oDomain = GetObject(“WinNT://DOMAIN”)

‘ PART 3: Open an output text file
‘ to store users’ initial passwords
Dim oFSO, oTS
Set oFSO = CreateObject(“Scripting.FileSystemObject”)
Set oTS = oFSO.CreateTextFile(“c:\passwords.txt”,True)

‘ PART 4: For each record in the recordset,
‘ add the user, set the correct user
‘ properties, and add the user to the
‘ appropriate groups

‘ create the necessary variables
Dim sUserID, sFullName, sDescription
Dim sPassword, oUserAcct

‘ now go through the recordset one
‘ row at a time
Do Until oRS.EOF

 ‘ get the user information from this row
 sUserID = oRS(“UserID”)
 sFullName = oRS(“FullName”)
 sDescription = oRS(“Description”)

 ‘ make up a new password
 sPassword = Left(sUserID,2) & DatePart(“n”,Time) & _
 DatePart(“y”,Date) & DatePart(“s”,Time)

 ‘ create the user account
 Set oUserAcct = oDomain.Create(“user”,sUserID)

 ‘ set account properties
 oUserAcct.SetPassword sPassword
 oUserAcct.FullName = sFullName
 oUserAcct.Description = sDescription

 ‘ save the account
 oUserAcct.SetInfo

 ‘ write password to database
 oRS(“Password”) = sPassword

Chapter 4

75

 oRS.Update

 ‘ PART 5: All done!
 ‘ release the user account
 Set oUserAcct = Nothing

 ‘ move to the next row in the recordset
 oRS.MoveNext

Loop

‘ PART 6: Final clean up, close down
oRS.Close
oTS.Close
WScript.Echo “Passwords have been written to the database.”

Listing 4.3: Example script that uses the Recordset object.

The Recordset object also supports an AddNew method for adding new rows, and a Delete
k out the ADO documentation for details on using these methods

s and run more
or less vides another file type, WSF (for Windows Script File), which is a more
powerf L-formatted and provide better capabilities for
creating e parameters. Here’s a brief example:

guage=“VBScript”>

.Echo “This is VBScript”

guage=“JScript”>

Script.Echo(“This is JScript”);

ript>

 </job>

</package>

method for deleting rows; chec
in your scripts.

Windows Script Files
So far, all the scripts I’ve used in this guide are designed to be put into VBS file

as-is. WSH pro
ul and flexible format. WSF files are XM
 scripts that accept command-lin
<package>

 <job id=“VBS”>

 <?job debug=“true”?>

 <script lan

 WScript

 </script>

 </job>

 <job id=“JS”>

 <?job debug=“true”?>

 <script lan

 W

 </sc

Chapter 4

76

Notice that the script contains several distinct elements:

• The entire script is contained in a <package>.

• Multiple <job> elements can exist, each with its own ID.

• Each <job> can contain a <script>, which can be in VBScript or JScript (or any other
installed scripting language).

• The script itself is contained between the <script> tag and the </script> tag.

This example doesn’t provide much beyond what a plain text file could do. The real fun of the
WSF format comes with additional sections. Consider the example that Listing 4.4 shows.
<job>
 <runtime>
 <named
 name=“server”
 helpstring=“The server to run the script on”
 type=“string”
 required=“true”
 />

 <description>
 This script connects to a remote server and restarts it
 </description>

 <example>
 Example: Restart.wsf /server:servername
 </example>

 </runtime>
<script language=“VBScript”>
 ‘insert script here
</script>
</job>

Listing 4.4: Example WSF script.

This script defines a new <runtime> section, which contains several helpful sub-elements. The
first is <named>. This element defines a named command-line argument. In this case, the name
of the argument is “server,” and it is intended to be a string value. It is required; if the script is
executed without this argument, WSH won’t allow the script to run. If this script were named
“restart.wsf,” you would execute it by running

restart.wsf /server:servername

from a command-line. The type can be “string,” “Boolean,” or “simple.” In the case of “simple,”
the argument doesn’t take a value.

Within your script, you can use the following code to display an automatically-generated “help
file” for your script based on its arguments’ “helptext” parameters and the <example> and
<description> elements:

WScript.Arguments.ShowUsage

Chapter 4

77

� The <example> and <description> elements are just text and should be self-explanatory.

Users can also display the help text by running the script with the standard /? argument.

Within your script, you would access these arguments by using the WshArguments object. Using
the above WSF file as an example, you might do something like the following in the main body
of the script:

oArgs = WScript.Arguments.Named

sServerName = oArgs.Item(“server”)

The variable sServerName would now contain the value specified for the “server” argument.
Because WSF files provide this great functionality for defining arguments, and because they can
automatically produce a “help file” screen, it’s a great format for using VBScript to create your
own command-line utilities.

Signing Scripts
I recommend enabling WSH 5.6’s script signature verification policies on all computers in your
environment (read more about this feature on the Windows Scripting home page at
http://www.microsoft.com/scripting and at http://www.ScriptingAnswers.com). This feature,
when used properly, will prevent all unsigned scripts from executing, helping to prevent script-
based viruses.

In general, you enable the feature by editing the registry. Navigate to
HKEY_CURRENT_USER\SOFTWARE\Microsoft\Windows Script Host\Settings, and add a
REG_DWORD value named “TrustPolicy.” Set the value to 2 to fully enable signature
verification.

� There are also HKEY_LOCAL_MACHINE-related registry keys that affect verification policy, and you
may need to modify these in Windows XP and WS2K3 machines in order to fully enable the
verification policy. I provide an ADM template in the Downloads section of
http://www.ScriptingAnswers.com; use this template to centrally configure and manage the signature
verification policy settings via Group Policy objects (GPOs). Simply import the ADM template into a
GPO and configure it as desired in the User and Computer configuration sections of the GPO.

However, in order to make sure your scripts run, you will need to sign them using a digital
certificate issued for the purposes of code signing. You can purchase such a certificate from
commercial certification authorities (CAs) such as VeriSign (http://www.verisign.com) and
Equifax (http://www.equifax.com), or issue one from an internal CA, if your organization has
one.

0 Your client and server computers must be configured to trust the publisher of the certificate you use.
Consult the Windows documentation for information about importing a new trusted certificate
publisher, if necessary; most commercial CAs are trusted by default.

http://www.microsoft.com/scripting
http://www.scriptinganswers.com/
http://www.scriptinganswers.com/
http://www.verisign.com/
http://www.equifax.com/

Chapter 4

78

Microsoft provides an object called Scripting.Signer that can take a certificate and sign a script.
Note that signing a script marks the script with the signature, meaning you can’t change the
script without invalidating the signature (and preventing the script from running). If you need to
modify the script, you will need to re-sign it.

The following code sample shows how to write a script that signs other scripts:
Set oSigner = CreateObject(“Scripting.Signer”)

sFile = InputBox(“Path and filename of script to sign?”)

sCert = InputBOx(“Name of certificate to use?”)

sStore = InputBox(“Name of certificate store?”)

oSigner.SignFile(sFile, sCert, sStore)

You’ll simply need to know the name of your certificate and the certificate store in which the
certificate is installed.

Summary
In this chapter, I’ve introduced you to some advanced VBScript topics, including script signing
and security, flexible WSF files, remote scripting and script events, and ADO. Combined with
what you’ve learned about VBScript’s basics, WMI, and ADSI, you should be able to start
producing some useful scripts on your own.

I’ll leave you with some links to additional online resources that are designed specifically for
Windows administrative scripting:

• My Web site at http://www.ScriptingAnswers.com

• The Microsoft TechNet Script Center at
http://www.microsoft.com/technet/community/scriptcenter/default.mspx

• Clarence Washington’s excellent Win32 Script Repository at
http://cwashington.netreach.net/

• The Desktop Engineer’s Junk Drawer at http://desktopengineer.com/

• Windows Scripting on MSN Groups at
http://groups.msn.com/windowsscript/_homepage.msnw?pgmarket=en-us

• Windows & .NET Magazine’s Windows Scripting Solutions at
http://www.winnetmag.com/WindowsScripting/

• Chris Brooke’s Scripting for MCSEs column at
http://www.mcpmag.com/columns/columnist.asp?ColumnistsID=7

I think you’ll find that the interest in administrative scripting is growing and that there is a
constantly expanding set of resources for you to take advantage of. Good luck, and enjoy!

http://www.scriptinganswers.com/
http://www.microsoft.com/technet/community/scriptcenter/default.mspx
http://cwashington.netreach.net/
http://desktopengineer.com/
http://groups.msn.com/windowsscript/_homepage.msnw?pgmarket=en-us
http://www.winnetmag.com/WindowsScripting/
http://www.mcpmag.com/columns/columnist.asp?ColumnistsID=7

	Introduction to Realtimepublishers
	Chapter 1: Introduction to VBScript
	What is VBScript?
	Functions and Statements
	Exploring Functions
	Using Functions

	Fancy Variables
	Adding Logic
	Choosing from a List of Possibilities
	Executing Code Again and Again and Again
	Declaring Variables Carefully
	Alternative Loops

	Working with Objects
	The WScript Object
	File and Folder Objects
	Your First Administrative Script
	Summary
	Chapter 2: Working with ADSI
	ADSI Without a Directory
	ADSI Providers
	The WinNT Provider
	The LDAP Provider

	An ADSI Shortcut
	Querying Global Catalog Servers
	Useful ADSI Scripts
	User Account Scripts
	Group Scripts
	Computer Account Scripts
	Computer Management Scripts

	Scripting Batch Operations
	Summary
	Chapter 3: Working with WMI
	Classes and Queries
	Scripting and WMI
	There’s No One, Right Way
	Alternative Credentials
	Credential Security

	What to Do With WMI
	WMI Scriptlets
	Managing Services
	Archive Security Logs
	Extended WMI

	Summary
	Chapter 4: Advanced Scripting
	Remote Scripting
	The WshController Object
	WScript.ConnectObject
	Remote Scripting Limitations

	Database Scripting
	Making Data Connections
	Querying and Displaying Data
	Modifying Data

	Windows Script Files
	Signing Scripts
	Summary

