University of Sulaimani
College of Engineering
Electrical Engineering Department

Course Book of

Advanced Electronics Lab.

."'.’.".I:”ED?EI [\ | | l ! | A

University of Sulaimani Advanced Electronic Lab

College of Engineering Fourth Year 2010-2011

Electrical Engineering Department Prepared by: Mr. Araz S. Ameen

ALTERA DE2 Development and Education Board

DE2 Package:

The DE2 package contains all components needed to use the DE2 board in conjunction with a
computer that runs the Microsoft Windows software and Quartus Il software installed on it.
Package Contents
Figure 1 shows a photograph of the DE2 package.

Figure 1: The DE2 package contents.

The DE2 package includes:
e DE2 board.
e USB Cable for FPGA programming.
e 9V DC wall-mount power supply
Layout and Components:
A photograph of the DE2 board is shown in Figure 2. It depicts the layout of the board
and indicates the location of the connectors and key components.

Advanced Electronic Lab

Fourth Year 2010-2011

University of Sulaimani
College of Engineering

Electrical Engineering Department Prepared by: Mr. Araz S. Ameen

USE 1sB UsE Emamal
Blaster Deips HWos! Mic Ling Line 'Vidas VEAVIdes 101100
Pod Pat Ped i im Qul I P Pat RE-232 Pod
& [C Power
Supply Connactor 1 I I 1 1 l 1 l I 1 I
27-MHz Osclialor ol - ' i 11 i
246l Ao Codee ! &5 i

e P57 KeyboamiMouse Por
YA 10-b0 DAC

Power OMIOFF Sualch

LUSH HostSave Canlrolier

TV Decodet iNTSCIFAL) Efemet 10100H Conlreller

Exgeraion Header 2 (JP2)
Alinra 3B Baster Confrolar Chipsel
Aitera EFCS 16 Configuration Devica

= Exnareion Haader | (JP1)

Aliera Cyclone || FPGA
RUNPROG Switch for JTAG'AS Modas

16 LLL Modula |._ 50 Card Slal
TeSagmen Displays B Green LEDs
& o L e e |1V, TriANSH R
B — s\t Exteenal ot
18 Togle Gwiiches

4 Debouncad Pushhullon Safches

5lMHz Cscifor B-AB SDRAN 512-KB SRAM 4-MB Flash Mamary

Figure 2: The DE2 board.

The DE2 board has Altera Cyclone® Il 2C35 FPGA device in addition to all other input and
output devices (peripherals) that are tied to the FPGA pins.
The following hardware (input and output devices) is used in the experiments:

e 4 push button switches

o 18 toggle switches

e 18red user LEDs

e 9green user LEDs

e 8 Common Anode Seven Segment Display

e 50-MHz oscillator and 27-MHz oscillator for clock sources
In order to use the DE2 board, the user has to be familiar with the Quartus Il software. The
necessary knowledge can be acquired from the first experiment (Quartus Il Introduction Using
VHDL Design).

Pin Assignments:
A lists of the pin names on the Cyclone Il FPGA that are connected to the push button

switches, toggle switches, LED’s, 7-segment displays, and oscillators is given in the following
tables.

University of Sulaimani
College of Engineering

Electrical Engineering Department

Advanced Electronic Lab
Fourth Year 2010-2011
Prepared by: Mr. Araz S. Ameen

Table 1: Pin assignments for the pushbutton switches.

Description FPGA Pin No. Signal Name
Push button[0] PIN_G26 KEY[O]
Push button[1] PIN_N23 KEY[1]
Push button[2] PIN_P23 KEY[2]
Push button[3] PIN_W26 KEY[3]

Table 2: Pin assignments for the toggle switches.

Description FPGA Pin No. | Signal Name
Toggle Switch[0] PIN_N25 SWI[O0]
Toggle Switch[1] PIN_N26 SWI[1]
Toggle Switch[2] PIN_P25 SW[2]
Toggle Switch[3] PIN_AE14 SWI3]
Toggle Switch[4] PIN_AF14 SW[4]
Toggle Switch[5] PIN_AD13 SWI[5]
Toggle Switch([6] PIN_AC13 SW[6]
Toggle Switch([7] PIN_C13 SW[7]
Toggle Switch[8] PIN_B13 SW[8]
Toggle Switch[9] PIN_A13 SWI[9]
Toggle Switch[10] PIN_N1 SWI[10]
Toggle Switch[11] PIN_P1 SWI[11]
Toggle Switch[12] PIN_P2 SW[12]
Toggle Switch[13] PIN_T7 SW[13]
Toggle Switch[14] PIN_U3 SW[14]
Toggle Switch[15] PIN_U4 SWI[15]
Toggle Switch[16] PIN_V1 SWI[16]
Toggle Switch[17] PIN_V2 SWI[17]

Table 3: Pin assignments for the LED’s.

Description FPGA Pin No. Signal Name
LED Red[0] PIN_AE23 LEDR[O]
LED Red[1] PIN_AF23 LEDR[1]
LED Red[2] PIN_AB21 LEDR[2]
LED Red[3] PIN_AC22 LEDR[3]
LED Red[4] PIN_AD22 LEDR[4]
LED Red[5] PIN_AD23 LEDR[5]
LED Red[6] PIN_AD21 LEDR[6]
LED Red([7] PIN_AC21 LEDR[7]

University of Sulaimani
College of Engineering

Electrical Engineering Department

Advanced Electronic Lab

Fourth Year 2010-2011

Prepared by: Mr. Araz S. Ameen

LED Red([8] PIN_AA14 LEDR[8]
LED Red[9] PIN_Y13 LEDR[9]
LED Red[10] PIN_AA13 LEDR[10]
LED Red[11] PIN_AC14 LEDR[11]
LED Red[12] PIN_AD15 LEDR[12]
LED Red[13] PIN_AE15 LEDR[13]
LED Red[14] PIN_AF13 LEDR[14]
LED Red[15] PIN_AE13 LEDR[15]
LED Red[16] PIN_AE12 LEDR[16]
LED Red[17] PIN_AD12 LEDR[17]
LED Greenl[0] PIN_AE22 LEDG[O]
LED Green[1] PIN_AF22 LEDG[1]
LED Green|[2] PIN_W19 LEDG[2]
LED Green[3] PIN_V18 LEDG[3]
LED Green[4] PIN_U18 LEDG[4]
LED Green[5] PIN_U17 LEDG[5]
LED Green[6] PIN_AA20 LEDG[6]
LED Green[7] PIN_Y18 LEDG[7]
LED Green[8] PIN_Y12 LEDG[8]

Figure 3: Position and index of each segment in a 7-segment display.
Table 4: Pin assignments for the seven segment displays

Description FPGA Pin No. Signal Name
Seven Segment Digit 0[0] PIN_AF10 HEXO0[O0]
Seven Segment Digit 0[1] PIN_AB12 HEXO0[1]
Seven Segment Digit 0[2] PIN_AC12 HEXO0[2]
Seven Segment Digit 0[3] PIN_AD11 HEXO[3]
Seven Segment Digit 0[4] PIN_AE11 HEXO0[4]
Seven Segment Digit 0[5] PIN_V14 HEXO[5]
Seven Segment Digit 0[6] PIN_V13 HEXO[6]

Advanced Electronic Lab

Fourth Year 2010-2011

University of Sulaimani
College of Engineering

Electrical Engineering Department Prepared by: Mr. Araz S. Ameen

Seven Segment Digit 1[0] PIN_V20 HEX1[0]
Seven Segment Digit 1[1] PIN_V21 HEX1[1]
Seven Segment Digit 1[2] PIN_W21 HEX1[2]
Seven Segment Digit 1[3] PIN_Y22 HEX1[3]
Seven Segment Digit 1[4] PIN_AA24 HEX1[4]
Seven Segment Digit 1[5] PIN_AA23 HEX1[5]
Seven Segment Digit 1[6] PIN_AB24 HEX1[6]
Seven Segment Digit 2[0] PIN_AB23 HEX2[0]
Seven Segment Digit 2[1] PIN_V22 HEX2[1]
Seven Segment Digit 2[2] PIN_AC25 HEX2[2]
Seven Segment Digit 2[3] PIN_AC26 HEX2[3]
Seven Segment Digit 2[4] PIN_AB26 HEX2[4]
Seven Segment Digit 2[5] PIN_AB25 HEX2[5]
Seven Segment Digit 2[6] PIN_Y24 HEX2[6]
Seven Segment Digit 3[0] PIN_Y23 HEX3[0]
Seven Segment Digit 3[1] PIN_AA25 HEX3[1]
Seven Segment Digit 3[2] PIN_AA26 HEX3[2]
Seven Segment Digit 3[3] PIN_Y26 HEX3[3]
Seven Segment Digit 3[4] PIN_Y25 HEX3[4]
Seven Segment Digit 3[5] PIN_U22 HEX3[5]
Seven Segment Digit 3[6] PIN_W24 HEX3[6]
Seven Segment Digit 4[0] PIN_U9 HEX4[0]
Seven Segment Digit 4[1] PIN_U1 HEX4[1]
Seven Segment Digit 4[2] PIN_U2 HEX4[2]
Seven Segment Digit 4[3] PIN_T4 HEX4[3]
Seven Segment Digit 4[4] PIN_R7 HEX4[4]
Seven Segment Digit 4[5] PIN_R6 HEX4[5]
Seven Segment Digit 4[6] PIN_T3 HEX4[6]
Seven Segment Digit 5[0] PIN_T2 HEX5[0]
Seven Segment Digit 5[1] PIN_P6 HEX5[1]
Seven Segment Digit 5[2] PIN_P7 HEX5([2]
Seven Segment Digit 5[3] PIN_T9 HEX5(3]
Seven Segment Digit 5[4] PIN_R5 HEX5[4]
Seven Segment Digit 5[5] PIN_R4 HEX5[5]

Advanced Electronic Lab

Fourth Year 2010-2011

University of Sulaimani
College of Engineering

Electrical Engineering Department Prepared by: Mr. Araz S. Ameen

Seven Segment Digit 5[6] PIN_R3 HEX5][6]
Seven Segment Digit 6[0] PIN_R2 HEX6[0]
Seven Segment Digit 6[1] PIN_P4 HEX6[1]
Seven Segment Digit 6[2] PIN_P3 HEX6[2]
Seven Segment Digit 6[3] PIN_M2 HEX6][3]
Seven Segment Digit 6[4] PIN_M3 HEX6[4]
Seven Segment Digit 6[5] PIN_M5 HEX6[5]
Seven Segment Digit 6[6] PIN_M4 HEX6[6]
Seven Segment Digit 7[0] PIN_L3 HEX7[0]
Seven Segment Digit 7[1] PIN_L2 HEX7[1]
Seven Segment Digit 7[2] PIN_L9S HEX7[2]
Seven Segment Digit 7[3] PIN_L6 HEX7[3]
Seven Segment Digit 7[4] PIN_L7 HEX7[4]
Seven Segment Digit 7[5] PIN_P9 HEX7[5]
Seven Segment Digit 7[6] PIN_N9 HEX7[6]

Table 5: Pin assignments for the clock inputs

Description FPGA Pin No. Signal Name
27 MHz clock input | PIN_D13 CLOCK_27
50 MHz clock input | PIN_N2 CLOCK_50
Syllabus
Experiment Page Time(hour)

1 | Quartus Il Introduction Using VHDL Design 5 2
2 | Basic Structure of VHDL Code 21 2
3 | BCD to Seven Segment Decoder 24 2
4 | N-Bit Binary Adder 28 2
5 | BCD Adder 32 2
6 | Two Digit BCD Adder 36 2
7 | Latches and Flip Flops 39 2
8 | Shift Registers 43 2
9 | Counters 46 2
10 | State Machine Design 2

University of Sulaimani Advanced Electronic Lab

College of Engineering Fourth Year 2010-2011

Electrical Engineering Department Prepared by: Mr. Araz S. Ameen

Experiment number 1
Quartus |l Introduction Using VHDL Design

Apparatus Required: DE2 Board, PC.
Task: This experiment introduces the basic features of the Quartus Il software. It shows how the
software can be used to design and implement a circuit specified by using the VHDL
hardware description language. It makes use of the graphical user interface to invoke the
Quartus Il commands. Doing this experiment requires the following six steps:

Creating a project

Design entry using VHDL code.

Compiling a designed circuit.

Simulating the designed circuit.

Assigning the circuit inputs and outputs to specific pins on the FPGA.

6. Programming and configuring the FPGA chip on Altera’s DE2 board.

Getting Started:

Each logic circuit, or subcircuit, being designed with Quartus Il software is called a project.
The software works on one project at a time and keeps all information for that project in a
single directory (folder) in the file system. To begin a new logic circuit design, the first step is to
create a directory to hold its files. To hold the design files for this experiment, we will use a

directory (expl). The running example for this experiment is a simple circuit for two-way light
control.

o~ w b e

Start the Quartus Il software. You should see a display similar to the one in Figure 1. This display
consists of several windows that provide access to all the features of Quartus Il software, which
the user selects with the computer mouse

File Edt Yiew Project Assignments Processing Tools Window Help
D d ¥ | & B |-
s EO S || > > s O
Project Navigator - x

Enti

& Compiation Hieraichy

AITERA

EI)

QOQUARTUS II

Version 7.2

© Vew Quartus Ii
Information

® Documentation

g System { Processing)\ Estralnfo) Info)\ Waming)\ Criical Waming)\ Enor)\ Suppressed)\ Flag [
& Mowage 2| ®ll =
[Comem f—'rﬁ.'i

Figure 1: The main Quartus Il display.

University of Sulaimani Advanced Electronic Lab

College of Engineering Fourth Year 2010-2011

Electrical Engineering Department Prepared by: Mr. Araz S. Ameen

Step 1: Starting a New Project

To start working on a new design we first have to define a new design project. Quartus Il
software makes the designer’s task easy by providing support in the form of a wizard. Create a
new project as follows:

1. Select File > New Project Wizard to reach the window shown in fig.2, which indicates the

capability of this wizard. You can skip this window in subsequent projects by checking the
box (Don’t show me this introduction again).

L

New Project Wizard: Introduction

The Mew Project “wizard helps vou create a new project arnd preliminary project zettings.,
including the fal owing:

Project name and directory

Mame of the top-lewel design entity
- Froject files and libraries

Target device family and device
& EDA tool zettings

“r'ou can change the settings for an existing project and specify additional praject-wide
zettings with the S ettings command [Assignments menu)]. %ou can uze the various
pages of the Settings dialog box to add functionality to the project.

[Don't show ne this introduction again

I Mew: » I | Cancel

Figure 2: Tasks performed by the wizard.

2. Press Next to get the window in fig.3:

New Project Wizard: Directory, Name, Top-Level... gl

wihat iz the wor<ing directory for this project?

P71]

wihat iz the name of thiz project?

[light J

“w'hat iz the name of the top-level design entity for this projezt? This name is case sensitive
and rust exactly match the entity name in the dezign file.

Ilight _]

| U=e Exizting Project Settings ...

< Back | Mew: » | Finizh | Cancel

Figure 3: Creation of a new project.

9

University of Sulaimani Advanced Electronic Lab

College of Engineering Fourth Year 2010-2011

Electrical Engineering Department Prepared by: Mr. Araz S. Ameen

3. Set the working directory to be expl. The project must have a name, which is usually the
same as the top-level design entity that will be included in the project. Choose light as
the name for both the project and the top-level entity, as shown below. Press Next. Since
we have not yet created the directory exp1, Quartus Il software displays the pop-up box

in figure 4 asking if it should create the desired directory. Click Yes, which leads to the
window in figure 5.

Quartus I1 [] |

x‘“ ! 3 Cirectory "D Aintrotutorial” does not exist, Do you want to create it?

Yes [|

Figure 4: Quartus Il software can create a new directory for the project.

4. The wizard makes it easy to specify which existing files (if any) should be included in the

project. Assuming that we do not have any existing files, click Next, which leads to the
window in figure6.

New Project Wizard: Add Files [page 2 of 3] E|

Select the desicn files you want to include in the project. Click Add All to add all design file=s

i the project directory to the project. Mote: pou can always add design files to the project
later,

File narme: || | |
File name Tvpe Add All
Specify the path namesz of any non-default ibraries. dzer Libraries. . |

< Back | Mex: = | Firizh Cancel

Figure 5: The wizard can include user-specified design files.

10

University of Sulaimani
College of Engineering

Electrical Engineering Department

Advanced Electronic Lab
Fourth Year 2010-2011
Prepared by: Mr. Araz S. Ameen

New Project Wizard: Family & Device Settings [p... @

Select the Family and device you want to target for compilaton,

Family: Cyclone || ﬂ
Target device
" Auto device selected by the Fitker from the 'Awvailable devices' list

* Specific device selected in ‘Avalable devices' list

Available devices:

EF2C20F25ECS
EF2C20F256C7
EF2C20F256C3
EF2C20F256IE
EF2C20FA34C5
EF2C20FA34C7F
EF2C20FA34C3
EF2C20F 43415
EF2C35F 48405
EF2C35F484C7
EF2C35F 48403
EF2C35F 48412

Filters:

Pac<age: Any hd
Pin caurt: Ay b
Spe=d grade; | &ny -
Core voltage: 1.2

[+ Show Advanced Devices

EFP2C35FE72CS

EF2C35FE72CF

EF2C35FE72C3 7
EF2C35FE72IE

EF2CHOF 48405 [Advanced) w7

=

< Back | Mew: » | Firish Cancel

Figure 6: Choose the device family and a specific device.

5. We have to specify the type of device in which the designed circuit will be implemented.
Choose Cyclonell as the target device family. From the list of available devices, choose
the device called EP2C35F672C6 which is the FPGA used on Altera’s DE2 board. Press

Next, which opens the window in figure 7.

New Project Wizard: EDA Tool Settings [page 4 of...g]

Specify the ather EDA tools - in addition o the Quartus || software - used with the project.

[~ ED& design entry /
syunthesis tool: | J
-
[ED simulation tool: | J
-
[ED timing analysis tool: | J
-

< Back | Mex: > | Firizh | Cancel

Figure 7: Other EDA tools can be specified.

11

University of Sulaimani Advanced Electronic Lab

College of Engineering Fourth Year 2010-2011

Electrical Engineering Department Prepared by: Mr. Araz S. Ameen

6. The user can specify any third-party tools that should be used. Since we will rely solely on
Quartus Il tools, we will not choose any other tools. Press Next.

7. A summary of the chosen settings appears in the screen shown in figure 8.

New Project Wizard: Summary [page 5 of 5]

When you click Finish, the project will be created with the following settings:

Project director,:
v Aintratutonal /

Project name: light
T op-level design entity: light
Mumber of files added: a
Mumber of user libraries added: a

Device assignments:

Farmily nane: Cyclone 11

Drewice. EFP2C30FEV2CE
ED&, tools:

Deszign entrvdsynthesis: <Monex

Sirmulation: <Mone:

Timing analvsis: <MHonex

< Back I MHex: > I Finizh I Cancel

Figure 8: Summary of the project settings.

8. Press Finish, which returns to the main Quartus Il window, but with light specified as the
new project, in the display title bar, as indicated in figure 9.

4 Quartus Il - D:/introtutorial/light - light

FI|E Edlt Wiew Project Assigrments Processing TDD|S Wlndow Help

D@ o o w2 i
HrEY ul» k| S8
_ﬁr;].;t-Nawgatm _...1_’.‘]

Enfity
Cyclone |I: EF2C35FE72CE

e lighil

“Hierarch_l,l Files 1 &P Diesign Units!
Skatus L] =

NP A o Q U ARTU Sm 11

Version 5.0

http:/fwwwr. altera. com

|
1)
i
% Syslem;‘ Processing)\ E stra Infa }\ Info }\ e arning. }\ Critical Warnlr_’ng___}\ Errar ;"
= iMessage. L . sa_ JI_ acatiar
For Help, press F1 | Jit-me | Idle

Figure 9: The Quartus Il display for the created project.

12

University of Sulaimani Advanced Electronic Lab

College of Engineering Fourth Year 2010-2011

Electrical Engineering Department Prepared by: Mr. Araz S. Ameen

Step 2: Design Entry Using VHDL Code

As a design example, we will use the two-way light controller circuit shown in figure 10. The
circuit can be used to control a single light from either of the two switches, x1 and x2, where a
closed switch corresponds to the logic value 1. The truth table for the circuit is also given in the

figure. Note that this is just the Exclusive-OR function of the inputs x1 and x2, but we will specify
it using the gates shown.

S

/
0
1
1
0

B
T D

Figure 10: The light controller circuit.

The required circuit is described by the VHDL code in figure 11. Note that the VHDL entity is
called light to match the name given in figure 3, which was specified when the project was
created. This code can be typed into a file by using the Quartus Il text editing facilities. While the
file can be given any name, it is a common designers’ practice to use the same name as the
name of the top-level VHDL entity. The file name must include the extension vhd, which
indicates a VHDL file. So, we will use the name light.vhd.

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY light IS
PORT (x1, x2 :IN STD_LOGIC;
f : OUT STD_LOGIC);
END light;
ARCHITECTURE behavior OF light IS
BEGIN

f<= (x1 AND NOT x2) OR (NOT x1 AND x2);
END behavior;

Figure 11: VHDL code for the circuit in figure 10.

1. Select File > New to get the window in figure 12, choose VHDL File, and click OK. This
opens the Text Editor window.

2. Specify a name for the file that will be created. Select File > Save As to open the pop-up
box depicted in figure 13. In the box labeled Save as type choose VHDL File. In the box
labeled File name type light. Put a checkmark in the box Add file to current project.

13

Advanced Electronic Lab

Fourth Year 2010-2011

University of Sulaimani
College of Engineering

Electrical Engineering Department Prepared by: Mr. Araz S. Ameen

3. Click Save, which puts the file into the directory expl and leads to the Text Editor
window shown in figure 14. Maximize the Text Editor window and enter the VHDL code
in figure 11 into it. Save the file by typing File > Save.

Device Design Files ' Other Files]

AHDL File

Block Diagram/S chematic File
EDIF File

SOPC Builder System

State Machine File

Yenlog HDL File

WHDL File

| oK I Cancel

Figure 12: Choose to prepare a VHDL file.

Save in: |E} introtutarial d % Eo-
(Chdb

File name: ligh
Sawve az type: |\-"HDL File [*.«whd;" «hdl] j Cancel

v Add file to current project

Figure 13: Name the file.

A
i

Figure 14: Text Editor Window.

14

Advanced Electronic Lab

Fourth Year 2010-2011

University of Sulaimani
College of Engineering

Electrical Engineering Department Prepared by: Mr. Araz S. Ameen

Step 3: Compiling a Designed Circuit
The VHDL code in the file light.vhd is processed by several Quartus Il tools that analyze the
code, synthesize the circuit, and generate an implementation of it for the target chip. These

tools are controlled by the application program called the Compiler.

1. Run the Compiler by selecting Processing > Start Compilation, or by clicking on the
toolbar icon that looks like a purple triangle ™ .

2. The compilation moves through various stages, its progress is reported in a window on
the left side of the Quartus Il display.

3. Successful (or unsuccessful) compilation is indicated in a pop-up box. Acknowledge it by
clicking OK, which leads to the Quartus Il display in figure 15.

4. In the message window, at the bottom of the figure, various messages are displayed. In
case of errors, there will be appropriate messages given.

5. When the compilation is finished, a compilation report is produced.

File Edit W“iew Project Assignfrents Processing Tools MWindow Help
D@ E (8|8 o K| SR 2S% T >0 |k (S¢
Project Navigator (=] B ightvkd] & Campilation Fepart - Flow Summ..
E ity | 2 —
i
Cuclone II: EF2C35FET20E HtE}E &
g ot , LIERARY iese ; ‘
USE ieee.std logic 1164.all ;
ENTITY light I3
PORT [x1, =2 : IN 3TD LOGIC
< Compilation Report - Flow Summary =i
FEI |55 3 Compilation Report Flow Summary
& B Legal Motice
Status = xl %% Flow Summary Flow Statuz Successful - Mon Aug 08 17:22:41 2005
Module [Progress’ S Flow Settings Quartuz 1| Version 5.0Buld 168 06/22/2005 5F 1 SJ Fully
Full Compilation | A S Flow Elapsed Tire Rewizion Name lighk
A.n_alysis & Synthesis_ _ % Flow Log Top-.level Entity Mame Jight:
. Fitter B %D analysis & Synthasis Fam!I_l,J Cyclane 11
: Assn_amb!er B %Cl Fitter Device EP2C3RFETZCR
Ti!'ping_ﬁ\nquzet i %D sssermbler Timing Models Preiminary
+ %CI Timing Analyzer Met timing requirements e
i Total Ingic elements 1433216 (<1 %) B
Total registers] 5
< ¥ 5 =
£ ,i,? Info: Command: quartuz_tan -read settings_fileg=off -write_settings_files=off ight -c light -timing_analysiz_anly R
2 B “A2 |nfo: Longest tpd from source pin 2" to destination pin "'f" is 5.740 nz W
< | »
% Sgstem.}\ Pmcessingﬂ Extra Info)__Infu)\ Walr}ing.)\ Critical Warming)\ EIIDI/
giMessage:an‘lEB ;'_: g| zatlan _] ol
For Help, press F1 [owR = |dle UM

Figure 15: Display after a successful compilation.

15

University of Sulaimani Advanced Electronic Lab

College of Engineering Fourth Year 2010-2011

Electrical Engineering Department Prepared by: Mr. Araz S. Ameen

Step 4: Simulating the Designed Circuit

Before implementing the designed circuit in the FPGA chip on the DE2 board, it is prudent to
simulate it to ascertain its correctness. Quartus Il software includes a simulation tool that can be
used to simulate the behavior of a designed circuit. A designed circuit can be simulated in two
ways. The simplest way is to assume that logic elements and interconnection wires in the FPGA
are perfect, thus causing no delay in propagation of signals through the circuit. This is called
functional simulation. A more complex alternative is to take all propagation delays into account,

which leads to timing simulation. Typically, functional simulation is used to verify the functional
correctness of a circuit as it is being designed.
1. Open the Waveform Editor window by selecting File > New, which gives the window
shown in figure 16.

Device Design Files I QOther Files |

ASHDL File

Block Diagram/5Schematic File
EDIF File

SOPC Builder System

State Machine File

“erilog HDL File

“YHDL File

| oK I Cancel

Figure 16: Need to prepare a new file.

2. Click on the Other Files tab to reach the window displayed in figure 17. Choose Vector
Waveform File and click OK

New @

Device Design Files Other Files I

AHDL Include File

Block Symbal File

Chain Description File
Hexadecimal [Intel-Format] File
In-System Sources and Probes Editor File
Logic Analyzer Interface File
temaory Initialization File
SignalT ap Il Logic Analyzer File
Synopsys Design Constraints File
Tel Script File

Text File

Vector \Waveform File

| oK I Cancel

Figure 17: Choose to prepare a test-vector file.

16

University of Sulaimani

College of Engineering

Electrical Engineering Department

Advanced Electronic Lab

Fourth Year 2010-2011

Prepared by: Mr. Araz S. Ameen

3. The Waveform Editor window is depicted in figure 18. Save the file under the name
light.vwf; note that this changes the name in the displayed window. Set the desired

simulation to run from

the dialog box that pops up.

(0 to 200) ns by selecting Edit > End Time and entering 200 ns in

4. Selecting View > Fit in Window displays the entire simulation range of 0 to 200 ns in the

window.

T light.vwi* CIo=d|

bdaster Timme Bar: 1415 ns <| | FPaointer: 487 ns Inter\,-'al'|

-9.28 ns Staut: |

End:l

MNamoc

Ps 40'.0 ns BD.ID ns

1 ZD.ID ns

1 BD.ID ns

200.0 nsl

1415 ns

Figure 18: The Waveform Editor Window.

5. To include the input and output nodes of the circuit to be simulated. Click
Edit > Insert Node or Bus to open the window in figure 19.

insertNodeorBus 3|
MHarme: I | Ol I
Twpe: IINF’UT LI Cancel I
Walue tvpe: |5-Lewvel =l MNode Finder... I
Fuad i | Do ;l
Bus wiclth: I-I
Start index: ID
I Displaw graw code countas binars count

Figure 19: The Insert Node or Bus dialogue.

6. Click on the button labeled Node Finder to open the window in Figure 20. The Node
Finder utility has a filter used to indicate what type of nodes are to be found. Since we
are interested in input and output pins, set the filter to Pins: all. Click the List button to
find the input and output nodes as indicated on the left side of the figure.

Node Finder

o]

<]

Cameal |

Mamed: |E ﬂ Filter: |F'ins: all ﬂ Customize. .. | List
Laak ir: [TEEL =] | = Inchids subsnitis: | ™
Modes Found: Selected Modes:

Mame | Aszignments | Type ¥ Mame | Agzignments | Tepe
P f PIMN_AE22 Output .y = [light]=1 PIN_MZ2E Input
= =1 PIN_MZE Input I llight|=2 PIN_MNZ25 Input
- 2 PIMN_M25 Inpuit < A light|f FIN_&E22 Output

< > < < >

Figure 20: Selecting nodes to insert into the Waveform Editor.

17

Advanced Electronic Lab

Fourth Year 2010-2011

University of Sulaimani

College of Engineering

Electrical Engineering Department Prepared by: Mr. Araz S. Ameen

7. Click on the x1 signal in the Nodes Found box in figure 20, and then click the > sign to add
it to the Selected Nodes box on the right side of the figure. Do the same for x2 and f.
Click OK to close the Node Finder window, and then click OK in the window of figure 19.
This leaves a fully displayed Waveform Editor window, as shown in figure 21.

B light.ww ik
taster Time Bar: 1415 ns *I >| Puointer: 3585 s Interval:| 21.7 ns Start: End:|
ps
Marmne 1416 ns
o
L x1
[x2
L 1
o - | By | 2l

Figure 21: The nodes needed for simulation.

8. Specify the logic values to be used for the input signals x1 and x2 during simulation. The
logic values at the output f will be generated automatically by the simulator.

9. Click on the waveform name for the x1 node. Once a waveform is selected, the editing
commands in the Waveform Editor can be used to draw the desired waveforms.
Commands are available for setting a selected signal to 0, 1, unknown (X), high
impedance (Z), don’t care (DC), inverting its existing value (INV), or defining a clock
waveform. Each command can be activated by using the Edit > Value command Set x1 to
0 in the time interval 0 to 100 ns, which is probably already set by default. Next, set x1 to
1 in the time interval 100 to 200 ns. Do this by pressing the mouse at the start of the
interval and dragging it to its end, which highlights the selected interval, and choosing the
logic value 1 in the toolbar. Make x2 = 1 from 50 to 100 ns and also from 150 to 200 ns,
which corresponds to the truth table in Figure 10. This should produce the image in figure
22. Observe that the output f is displayed as having an unknown value at this time, which

is indicated by a hashed pattern; its value will be determined during simulation. Save the
file.

b aster Time Bar: Opz 1| ¥| Painter. 128.07 nz Interyal 128.07 nz Start; End:

0 ps 100ns 800ns 120018 1600 1s 2000
Mame 0 ps

R
il |
%2 |

Q9@

Figure 22: Setting of test values.

18

University of Sulaimani

College of Engineering

Electrical Engineering Department

Advanced Electronic Lab
Fourth Year 2010-2011
Prepared by: Mr. Araz S. Ameen

10.Select Assignments > Settings to open the Settings window. On the left side of this

window click on Simulator to display the window in figure 23, choose Functional as the

simulation mode, and click OK.

Categon:

Settings - light [x] I

General
+-Files
- User Libraries
- Device
-Timing Reguirements & Options
-EDA Tool Settings
Design Entryf Synthesis
- Sirnulation
-Timing Analysis
Board-Level

Formal Yerification

i Physical Synthasis
Compilation Process Settings
i Early Timing Estimate
-Analysis & Synthesis Settings
Fitter Settings

B

-

= Timing Analyzer

L Diesign Assistant

2 SignalTap Il Logic Analkyzer

- BignalProbe Settings

-Simulatar
& FowerPlay Power Analyzer Setiings
3 Software Build Setings

- HardCopy Setings

- Physical Synthesis Optimizations

Sirnulation input |

Simulation period

& Run simulation until all vector stimuli are used

" End sirulation at: | |r-.=, -I

¥ Automatically add pins to simulation output waveiforms

™ Check outputs

I™ Setup and hiold tirme walstion detection

¥ Simulation coverage reparting

I Glitch detection

™ Owverwrite sirulation input file with sirmulation results

uPEare Transactan Model File Mame |

Signal ad\vity output for power analysis

" Generate Signal Activity File

light.oaf |

Eignal Activity Bile Optians.

o]

Czncel

Figure 23: Specifying the simulation mode.

11.Select Processing > Generate Functional Simulation Netlist.

12. A simulation run is started by Processing > Start Simulation. Quartus Il software indicates

its successful completion and displays a Simulation Report illustrated in figure 24. If your
report window does not show the entire simulation time range, click on the report
window to select it and choose View > Fit in Window. Observe that the output f is as

specified in the truth table of figure 10.

Simulation ¥Waveforms
tazter Time Bar: 0pz 1| | Painter: 196.84 nz Intewal: 196.84 ns Start: Znd:
0 pz 4D.|D ns BEI.!:I nz 12I:IiD nz 1EEIiEI nz 200.0 n4
M arne 0 ps
I
- | |
(1] e | | |
o f | I
< >

Figure 24: The result of Functional Simulation.

19

University of Sulaimani Advanced Electronic Lab

College of Engineering Fourth Year 2010-2011

Electrical Engineering Department Prepared by: Mr. Araz S. Ameen

Step 5: Pin Assignment

During the compilation, the Quartus Il Compiler was free to choose any pins on the selected
FPGA to serve as inputs and outputs. However, the DE2 board has hardwired connections
between the FPGA pins and the other components on the board. We will use two toggle
switches, labeled SW0 and SW1, to provide the external inputs x1 and x2. These switches are
connected to the FPGA pins N25 and N26, respectively. We will connect the output f to the
green light-emitting diode labeled LEDGO, which is hardwired to the FPGA pin AE22.

1. Select Assignments > Assignment Editor to reach the window in figure 25.

€ Assignment Editor

4 + Category: | PFin j ﬁ all || = pin (b Timing | #* Logic Options |
A + Information: | This cell specifies the pin name to which you want to make an assignment, --> Double-click to create a new assignment,
= Edit: ¥ A [z=rews=> |
Ta Location I Bank, I Standard General Function Special Function
1 = new =
< »

Figure 25: The Assignment Editor Window

2. Under Category select Pin. Double-click on the entry <<new>> which is highlighted in blue
in the column labeled To. The drop-down menu in figure 26 will appear. Click on x1 as the
first pin to be assigned; this will enter x1 in the displayed table.

To

| -
o f

1l
(1 e

Figure 26: The drop-down menu displays the input and output names.

3. Double-click on the box to the right of this new x1 entry, in the column labeled Location.
Type the name of the pin (N25) in the Location box. Use the same procedure to assign
input x2 to pin N26 and output f to pin AE22, which results in the image in figure 27. To
save the assignments made, choose File > Save.

4. Recompile the circuit, so that it will be compiled with the correct pin assignments.

20

University of Sulaimani
College of Engineering

Electrical Engineering Department

Advanced Electronic Lab
Fourth Year 2010-2011
Prepared by: Mr. Araz S. Ameen

% Assignment Editor* =13
— b

oF = + Category: | Pin - ﬁ all | ¥ Fin (b Timing | * Logic Options |

= | + Information: This cell specifies the pin name ko which you want to make an assignment.

L=l Edit: A | |

To Location IfO Bank. I Skandard | -

iR el PIM_MZS = LYTTL
2 = X2 PIN_Mz6 5 LWTTL

T 3 £ F PIM_AF =5 7 1WTTI

Eial | LWTTL

= ||®= LYTTL »
< >

S

Figure 27: The Complete Assignment

Step 6: Programming and Configuring the FPGA Device

The FPGA device must be programmed and configured to implement the designed circuit.

The required configuration file is generated by the Quartus Il Compiler. Altera’s DE2 board
allows the configuration to be done in two different ways, known as JTAG and AS modes. We
will use the JTAG mode in our experiments. In the JTAG mode, the configuration data is loaded
directly into the FPGA device. If the FPGA is configured in this manner, it will retain its
configuration as long as the power remains turned on. The configuration information is lost

when the power is turned off.

1.

Make sure that the USB cable is properly connected.

2. Turn on the power supply switch on the board.
3.
4. Select Tools > Programmer to reach the window in figure 28. Here it is necessary to specify

Flip the RUN/PROG switch into the RUN position.

the programming hardware and the mode that should be used. If not already chosen by
default, select JTAG in the Mode box. Observe that the configuration file light.sof is listed
in the window in Figure 28.

Click on the Program/Configure check box in figure 28.

Press Start in the window in figure 28. An LED on the board will light up when the
configuration data has been downloaded successfully. If you see an error reported by
Quartus Il software indicating that programming failed, then check to ensure that the
board is properly powered on.

@ light.cdf EEX

‘:; Hardware Setup... USEB-Blaster [JSB-L] Made: |JTAG j Progress: 0%

Frograrn/
Configure

P Start i Checksum Usercode werify Examine

*Hﬂ Auto Detect
¥ Delete

e 4dd File...

[Change File...

Figure 28: The Programmer Window

21

Advanced Electronic Lab

Fourth Year 2010-2011

University of Sulaimani

College of Engineering

Electrical Engineering Department Prepared by: Mr. Araz S. Ameen

Experiment number 2
Basic Structure of VHDL Code

Apparatus: PC and DE2 Board
Task: Learn the basic parts of VHDL components
Theory:

VHDL is a hardware description language; it describes the behavior of an electronic circuit or
system from which the physical circuit or system can be implemented. VHDL stands for VHSIC
Hardware Description Language. VHSIC is itself an abbreviation for Very High Speed Integrated
Circuit. A circuit or sub-circuit described with VHDL code is called a design entity or just
entity.Figurel shows the general structure of an entity. It has three main parts:

Entity

LIBRARY
Declaration

ENTITY
Declaration

ARCHITECTURE

Figurel: The general structure of a VHDL design entity

1- LIBRARY declarations: Contains a list of all libraries to be used in the design.
General form: LIBRARY library_name;
USE library name.package _name.all ;

2- ENTITY declaration: Specifies the input and output pins of the circuit. The name of the
entity can be any legal VHDL name. The input and output signals are specified using the
keyword PORT. Whether each port (pin) is an input, output, or bidirectional are
specified by the mode of the port. The available modes are summarized in tablel.

General form: ENTITY entity_name IS
PORT (signal_name, signal_name, ... : mode type_name;
signal_name, signal_name, ... : mode type_name);

END entity_name;

22

Advanced Electronic Lab

Fourth Year 2010-2011

University of Sulaimani
College of Engineering

Electrical Engineering Department

Prepared by: Mr. Araz S. Ameen

3- ARCHITECTURE provides the circuit details for an entity. It has two main parts: the
declarative region and architecture body.
e The declarative region appears preceding the BEGIN keyword. It can be used to
declare signals, user defined data types, constants, components, and attributes.
e The functionality of the entity is specified in the architecture body, which follows
the BEGIN keyword. This specification involves statements that define the logic
function in the circuit.
General form: ARCHITECTURE architecture_name OF entity_name IS
[SIGNAL declarations]
[CONSTANT declarations]
[TYPE declarations]
[COMPONENT declarations]
[ATTRIBUTE declarations]
BEGIN
COMPONENT instantiation statements;
CONCURRENT ASSIGNMENT statements;
PROCESS statements;
GENERATE statements;
END architecture_name;

Table 1: The possible modes for signals that are entity ports

Mode Purpose

IN Used for a signal that is an input to an entity.

Used for signal that is an output from an entity. The value of the signal can not
ouT be used inside the entity. This means that in an assignment statement, the
signal can appear only to the left of the <= operator.

INOUT Used for a signal that is both an input to an entity and an output from the

Used for a signal that is an output from an entity. The value of the signal can be
BUFFER used inside the entity, which means that in an assignment statement, the signal
can be appear both on the left and right sides of the <= operator.

Design Example:

Figure 2 shows the block diagram, and logic diagram of a full adder circuit. Figure 3 gives the
VHDL code for the full adder of figure2.
The entity declaration specifies the input and output signals. The input port Cin is the carry-in,
and the bits to be added are the input ports x and y. The output ports are the sum, s, and the
carry-out, Cout. The entity represents the block diagram of the full adder (figure 2a).

23

Advanced Electronic Lab

Fourth Year 2010-2011

University of Sulaimani
College of Engineering

Electrical Engineering Department Prepared by: Mr. Araz S. Ameen

The architecture defines the functionality of the full adder using logic equations. The logic
equations used in the architecture body is the simple type of concurrent assignment
statements. The architecture represents the logic diagram of the full adder (figure 2b).

H s
THE O —
X — -

Y— FA

Cin—] I Cout Cin :

(a) (b)
Figure 2: a) Block diagram of full adder
b) Logic diagram of full adder

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
ENTITY fulladder IS
PORT (cin, x,y AN STD_LOGIC;
s, cout :0UT STD_LOGIC);
END fulladder ;
ARCHITECTURE behavior OF fulladder IS
BEGIN
s<=x XOR y XOR cin;
cout<=(x AND y) OR (x AND cin) OR (y AND cin) ;
END behavior;

Figure 3: VHDL code of a full adder.
Procedure:
1. Create a new Quartus Il project for the full adder circuit. Select Cyclone Il EP2C35F672C6
as the target chip, which is the FPGA chip on the Altera DE2 board.
2. Create a VHDL entity for the code in Figure 3 and include it in your project.
3. Compile the design, then select Tools > Netlist Viewer > RTL Viewer.
4. Include in your project the following pin assignments for the DE2 board, and recompile the

project.
Port Name | FPGA Pin No. | Description on DE2 Board
cin PIN N25 Toggle Switch[0]
X PIN N26 Toggle Switch[1]
i PIN P25 Toggle Switch[2]
s PIN AE23 LED Red[0]
cout PIN AF23 LED Red[1]

24

University of Sulaimani Advanced Electronic Lab

College of Engineering Fourth Year 2010-2011

Electrical Engineering Department Prepared by: Mr. Araz S. Ameen

5. Download the compiled circuit into the FPGA chip. Test the functionality of the circuit
(verify its truth table) by toggling the switches and observing the LEDs.
Discussion:
1. Specify the three basic parts of the VHDL code of the full adder.
2. Write discrete VHDL codes for (half adder, half subtracter, and full subtracter).

25

Advanced Electronic Lab

Fourth Year 2010-2011

University of Sulaimani
College of Engineering

Electrical Engineering Department Prepared by: Mr. Araz S. Ameen

Experiment Number 3
BCD to Seven Segment Decoder

Apparatus: PC and DE2 Board

Task: Learning the following: Using STD LOGIC_VECTOR types, the use of Selected Signal
Assignment and OTHERS, and Seven segment display.

Theory:

1. STD_LOGIC_VECTOR type:

To use this type, we must include the two statements in the VHDL code

LIBRARY IEEE;
USE IEEE. STD_LOGIC_1164. ALL,;

These statements provide access to the std_logic_1164 package in the library ieee, which
defines the STD_LOGIC data type. The following values are legal for STD_LOGIC:0,1,Z,-, L, H, U,
X, and W. Only the first four values are useful for logic circuits. The value Z represent high
impedance, and — stands for don’t care. The STD _LOGIC_VECTOR represents an array of
STD_LOGIC.

Example: SIGNAL ¢ : STD_LOGIC_VECTOR (1 TO 4);
SIGNAL x : STD_LOGIC_VECTOR (3 DOWNTO 0);
c and x are both 4-bit number. Now if c=0101 and x=0100 then:
e ¢c(1)=0,c(2)=1,c(3)=0,c(4)=1,x(3)=0,x(2)=1,x(1)=0,x (0)=0.

2. Selected Signal Assignment and OTHERS:
The selected signal assignment is a type of concurrent assignment statement; it is used to
set the value of a signal to one of several alternatives based on a selection criterion. The

general form is: WITH expression SELECT
signal name <= expression WHEN constant value,
expression WHEN constant value,

expression WHEN constant value ;

The statement(S <= OTHERS='0") set each bit of S to 0.

Example: SIGNAL x1, x2, Sel, f : STD_LOGIC;
WITH Sel SELECT
f<= x1WHEN'O',

x2 WHEN OTHERS :
This Example describes a 2 to 1 multiplexer with Sel as the select input. In a selected signal
assignment, all possible values of the select input, Sel in this case, must be explicitly listed in the
code. The word OTHERS provides an easy way to meet this requirement. OTHERS represent all
possible values not already listed. In this case the other possible values are 1, Z, -, and so on.

26

Advanced Electronic Lab

Fourth Year 2010-2011

University of Sulaimani

College of Engineering

Electrical Engineering Department Prepared by: Mr. Araz S. Ameen

3. Seven Segment Display:

Seven segment displays are used in many type of products. These displays are used with logic
circuits that decode BCD number and activate the appropriate digit on the display. There are
two types of seven segment display; common anode and common cathode.

e Incommon anode type, the segments will light if logic 0 applied to its terminals.

e Incommon cathode type, the segments will light if logic 1 applied to its terminals.
The seven segment displays on the DE2 board are of common anode type.
Design Example:

A BCD to seven segment decoder is a combinational circuit that converts a decimal digit in
BCD to an appropriate code for the selection of segments in a display indicator used for
displaying the decimal digit in a familiar form. The seven outputs of the decoder (SO, S1, S2, S3,
S4, S5, and S6) select the corresponding segments in the display, as shown in figurel. The six
invalid combinations should result in blank display.

Figure2 shows the VHDL code for the design example, the logic expressions for the seven
segments outputs (SO, S1, S2, S3, S4, S5, S6) must be derived using Karnaugh map.

Another VHDL code style for the design example is shown in figure3; this style uses selected
signal assignment instead of simple assignment statement. This style represents the truth table
of the functions (tablel), therefore the minimization step using Karnaugh map not required.

C) -— -— -— C__J

0 1 2 3 4 5 6 7 8 9

S5 s1

S4 S2

lsel

S3

Figure 1: Seven Segment Display

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
ENTITY sevensegment IS
PORT (a . IN STD_LOGIC_VECTOR (3 DOWNTO 0) ;
s :0UT STD_LOGIC_VECTOR(0 TO 6));
END sevensegment;
ARCHITECTURE behavior OF sevensegment IS

BEGIN
] (0) B ;
LY (1) B ;
] 07 B ;
S(3)<= vrrrrerrrenrennreeneennnees ;
S(4)<= crrererrrenrecnrenneesnnens ;
S(5)<= rrrrerrrenrecnrenneennnees ;
] (2 PO ;

END behavior;

Figure 2: VHDL Code for BCD to Seven Segment Decoder using Simple Assignment Statement

27

Advanced Electronic Lab

Fourth Year 2010-2011

University of Sulaimani
College of Engineering

Electrical Engineering Department Prepared by: Mr. Araz S. Ameen

LIBRARY IEEE;

USE IEEE.STD_LOGIC_1164.ALL;

ENTITY sevensegment IS

PORT (a :IN STD_LOGIC_VECTOR (3 DOWNTO 0);
S :0UT STD_LOGIC_VECTOR(0 TO 6));
END sevensegment;
ARCHITECTURE behavior OF sevensegment IS
BEGIN
WITH a SELECT
s<= "0000001" WHEN "0000" ,

"1001111" WHEN "0001" ,
"0010010" WHEN "0010" ,
"0000110" WHEN "0011" ,
"1001100" WHEN "0100" ,
"0100100" WHEN "0101" ,
"0100000" WHEN "0110" ,
"0001111" WHEN "0111" ,
"0000000" WHEN "1000" ,
"0000100" WHEN "1001" ,
"1111111" WHEN OTHERS;

END behavior;

Figure 3: VHDL Code for BCD to Seven Segment Decode using Selected Signal Assignments

Table 1: Truth table of BCD to common anode seven segment display

BCD Code Seven Segment outputs
A3 A2 Al A0 SO S1 S2 S3 S4 S5 S6
0 0 0 0 0 0 0 0 0 0 1
0 0 0 1 1 0 0 1 1 1 1
0 0 1 0 0 0 1 0 0 1 0
0 0 1 1 0 0 0 0 1 1 0
0 1 0 0 1 0 0 1 1 0 0
0 1 0 1 0 1 0 0 1 0 0
0 1 1 0 0 1 0 0 0 0 0
0 1 1 1 0 0 0 1 1 1 1
1 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 1 0 0
1 0 1 0 1 1 1 1 1 1 1
1 0 1 1 1 1 1 1 1 1 1
1 1 0 0 1 1 1 1 1 1 1
1 1 0 1 1 1 1 1 1 1 1
1 1 1 0 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1

N
o

Advanced Electronic Lab

Fourth Year 2010-2011

University of Sulaimani
College of Engineering

Electrical Engineering Department Prepared by: Mr. Araz S. Ameen

Procedure:

1. Create a new Quartus Il project for the BCD to seven segment decoder circuit. Select
Cyclone Il EP2C35F672C6 as the target chip, which is the FPGA chip on the Altera DE2
board.

2. Create a VHDL entity for the code in Figure 3 and include it in your project.

3. Compile the project.

4. Make the following pin assignments for the DE2 board, and recompile the project.

Port Name | FPGA Pin No. | Description on DE2 Board
a(0) Toggle Switch[0]

a(1) Toggle Switch[1]

a(2) Toggle Switch[2]

a(3) Toggle Switch[3]

s(0) Seven Segment Digit 0[0]
s(1) Seven Segment Digit 0[1]
s(2) Seven Segment Digit 0[2]
s(3) Seven Segment Digit 0[3]
s(4) Seven Segment Digit 0[4]
s(5) Seven Segment Digit 0[5]
s(6) Seven Segment Digit 0[6]

5. Download the compiled circuit into the FPGA chip. Test the functionality of the circuit by
toggling the switches and observing the seven segment display.

Discussion:
1. Derive the logic expressions for the seven segment display outputs and complete the
VHDL code of figure 2. Which code style you prefer (figure 2 or figure 3), why?

2. Write a VHDL code for a circuit that coverts gray code to BCD code using two the styles of
figure 2 and figure 3.

29

Advanced Electronic Lab

Fourth Year 2010-2011

University of Sulaimani
College of Engineering

Electrical Engineering Department Prepared by: Mr. Araz S. Ameen

Experiment Number 4
N-Bit Binary Adder

Apparatus: PC and DE2 Board

Task: Learning the following: 1. COMPONENT declaration and instantiation.
2. FOR GENERATE statement.
3. Defining an ENTITY with GENERIC

Theory:

1. COMPONENT Declaration and Instantiation:

A VHDL code defined in one source code file can be used as a subcircuit in another source
code file. In VHDL jargon the subcircuit is called a component. A subcircuit must be declared
using a component declaration. This statement specifies the name of the subcircuit and gives
the names of its input and output ports. The component declaration can appear either in the
declaration region of an architecture or in package declaration.

General form: COMPONENT component_name
GENERIC (parameter_name: integer: = default value ;
parameter_name: Integer: = default value);

PORT (signal_name, signal_name, ... : mode type_name;
signal_name, signal_name, ... : mode type_name);
END COMPONENT;

Once a component declaration is given, the component can be instantiated as a subcircuit.
This done using component instantiation statement.

General form:
1- Named Association:
Instance_name : component name
PORT MAP (formal_name=> actual_name, formal_name=> actual_name,);
2- Positional Association:
Instance_name : component name
PORT MAP (actual_name, actual_name,) ;

Each formal name is the name of a port in the subcircuit. Each actual name is the name of a
signal in the code that instantiate the subcircuit. The signal names following PORT MAP keyword
can be written in two ways:

30

Advanced Electronic Lab

Fourth Year 2010-2011

University of Sulaimani
College of Engineering

Electrical Engineering Department Prepared by: Mr. Araz S. Ameen

e IN name association, the order of the signal listed after PORT MAP keyword does not
have to be the same as the order of the ports in the corresponding COMPONENT
declaration.

e IN positional association, the signal names following the PORT MAP keyword are given in
the same order as in the COMPONENT declaration, and then the formal name is not
needed.

The VHDL code of figurel represents the design entity for 4-bit adder which uses the VHDL
code of full adder in experiment number2 as a component.

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
ENTITY adder IS

PORT (cin :IN STD_LOGIC;
X,y :IN STD_LOGIC_VECTOR(3 DOWNTO 0) ;
S : OUT STD_LOGIC_VECTOR(3 DOWNTO 0) ;
cout : OUT STD_LOGIC);
END adder;

ARCHITECTURE behavior OF adder IS
SIGNAL ¢ : STD_LOGIC_VECTOR(1TO 3);
COMPONENT fulladder

PORT (cin, x, y :IN STD_LOGIC;
s, cout : OUT STD_LOGIC);
END COMPONENT;

BEGIN
stageO: fulladder PORT MAP (cin, x(0), y(0), s(0), c(1)) ;
stagel: fulladder PORT MAP (c(1), x(1), y(1), s(1), c(2)) ;
stage2: fulladder PORT MAP (c(2), x(2), y(2), s(2), c(3)) ;
stage3: fulladder PORT MAP (c(3), x(3), y(3), s(3), cout) ;
END behavior;

Figure 1: VHDL code for a four bit adder, using component instantiation

2. FOR —GENERATE statement:

The FOR-GENERATE statement provides a convenient way of repeating either a logic
expression or a component instantiation. The code of figure2 illustrates its use for component
instantiation. The code in the figure is equivalent to the code given in figurel.

31

Advanced Electronic Lab

Fourth Year 2010-2011

University of Sulaimani
College of Engineering

Electrical Engineering Department Prepared by: Mr. Araz S. Ameen

General form: generate_label :
FOR index_variable IN range GENERATE
statement ;
statement ;
END GENERATE;

3. Defining an ENTITY with GENERICs:

The code in figure2 represent 4-bit binary adder. It is possible to make this code more general
by introducing a parameter in the code that represents the number of bits in the adder. In VHDL
jargon such parameter is called a GENERIC. Figure3 gives the code for an n-bit adder entity
named addern. The GENERIC keyword is used to define the number of bits, n, to be added. This
parameter is used in the code, both in the definitions of the signals X, Y, and S and in the FOR-
GENERATE statement that instantiate the n full adders.

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
ENTITY adder IS

PORT (cin :IN STD_LOGIC;
X, Y “IN STD_LOGIC_VECTOR (3 DOWNTO 0);
s : OUT STD_LOGIC_VECTOR (3 DOWNTO 0);
cout : OUT STD_LOGIC);
END adder;

ARCHITECTURE behavior OF adder IS
SIGNAL C: STD_LOGIC_VECTOR (0 TO 4);
COMPONENT fulladder

PORT (cin, x, y 1IN STD_LOGIC;
s, cout : OUT STD_LOGIC);
END COMPONENT;
BEGIN
c(0) <=cin;

Generate_label:
FORIiIN OTO 3 GENERATE
bit: fulladd PORT MAP (c(i), x(i), y(i), s(i), c(i+1)) ;
END GENERATE;
cout<=c(4);
END behavior :

Figure2: VHDL code for 4-bit adder using FOR-GENERATE statement

32

University of Sulaimani Advanced Electronic Lab

College of Engineering Fourth Year 2010-2011

Electrical Engineering Department Prepared by: Mr. Araz S. Ameen

LIBRARY ieee;
USE ieee.std_logic_1164.all ;
ENTITY adder IS

GENERIC (n : INTEGER : = 4) ;

PORT (Cin :IN STD_LOGIC;
XY :IN STD_LOGIC_VECTOR(n-1 DOWNTO 0) ;
S : OUT STD_LOGIC_VECTOR(n-1 DOWNTO 0) ;
Cout : OUT STD_LOGIC);
END adder ;

ARCHITECTURE behavior OF adder IS
SIGNALC: STD_LOGIC_VECTOR(0TO n);
COMPONENT fulladd

PORT (Cin, X, y :IN STD_LOGIC;
s, Cout : OUT STD_LOGIC) ;
END COMPONENT ;
BEGIN
C(0) <=Cin;

Generate_label:
FORiIN OTO 3 GENERATE
bit: fulladd PORT MAP (C(i), X(i), Y(i), S(i), C(i+1)) ;
END GENERATE ;
Cout <=C(n);
END behavior ;

Figure 3: VHDL code for n-bit adder

Procedure:

1. Create a new Quartus Il project for the n-bit binary adder. Select Cyclone Il EP2C35F672C6
as the target chip, which is the FPGA chip on the Altera DE2 board.

2. Create a VHDL entity for the code in Figure 3 and include it in your project.

3. Compile the project.

4. Make the following pin assignments for the DE2 board, and recompile the project.

33

Advanced Electronic Lab

Fourth Year 2010-2011

University of Sulaimani
College of Engineering

Electrical Engineering Department Prepared by: Mr. Araz S. Ameen

Port Name | FPGA Pin No. | Description on DE2 Board
X(0) Toggle Switch[0]
X(1) Toggle Switch[1]
X(2) Toggle Switch[2]
X(3) Toggle Switch[3]
Y(0) Toggle Switch[4]
Y(1) Toggle Switch[5]
Y(2) Toggle Switch[6]
Y(3) Toggle Switch([7]
Cin Toggle Switch[8]
S(0) LED Red [0]

S(1) LED Red [1]

S(2) LED Red [2]

S(3) LED Red [3]
Cout LED Red [4]

5. Download the compiled circuit into the FPGA chip. Test the functionality of the circuit for
the following values of Cin, X, Y

Cin X Y Result
0 0 0
0 4 5
0 6 2
0 10 8
0 11 9
1 12 10
1 8 15
1 5 3
1 7 8
1 15 15

Discussion:
1. Rewrite the code of figurel using name association.

2. Write a VHDL code for a 4-bit binary adder using only simple assignment statement
(note: do not use component).

34

Advanced Electronic Lab

Fourth Year 2010-2011

University of Sulaimani
College of Engineering

Electrical Engineering Department Prepared by: Mr. Araz S. Ameen

Experiment Number 5
BCD Adder

Apparatus: PC and DE2 Board

Task: Learning the use of DE2 Pin assignment file to simplify pin assignment step.

Theory:
A BCD adder is a logic circuit that adds two BCD digits(A and B) and produces two digit BCD

sum (K S). The addition of two BCD numbers, together with a possible carry from a previous
stage, using a 4- bit binary adder will produce a binary result in the range (0 to 19). To obtain the
results that exceeds 9, correction logic circuit is required to add (0110) to the binary results if
the results is greater than (1001), and nothing is added when the binary result is less than or
equal to (1001). Figurel shows the circuit diagram of the BCD adder.

B3 A3 BZ A2 Bl Al BO AO
C4 C3 CZ Cl Cin
FA3 | FA2 | FAL |« F.A0
Z3 ZZ Zl
| |
C, ‘0’
FA5 |« FA4 e
C6
K S, S, S, S,
BCD Digit D, BCD Digit D,

Figure 1: Circuit diagram of BCD adder.

35

Advanced Electronic Lab

Fourth Year 2010-2011

University of Sulaimani
College of Engineering

Electrical Engineering Department Prepared by: Mr. Araz S. Ameen

DE2 Pin Assignment File:

A useful Quartus Il feature allows the user to both export and import the pin assignments
from a special file format, rather than creating them manually using the Assignment Editor. A
simple file format that can be used for this purpose is the comma separated value (CSV) format,
which is a common text file format that contains comma-delimited values.

A good way to make the required pin assignments is to import into the Quartus Il software
the file called "DE2_ pin_ assignments. csv ", which is provided with the DE2 board and
available on your experiments folder.

It is important to realize that the pin assignments in the" DE2_ pin_ assignments.csv "file are
useful only if the pin names given in the file are exactly the same as the port names used in your
VHDL entity.

Design Example:
The design example for this experiment is building the BCD adder shown in figurel with the
following requirements:
1. Using full adder as a sub-circuit.
2. Using seven segment display as a sub-circuit to display the decimal value of the BCD
inputs (A and B) and BCD outputs (D4 and D).

SW(7) SW(B) SW(5) SW(4) SW(3) SW(2) SW(1) SW(0)

DB DA
HEX1(0) | +— SO SO—— |HEX0(0)
e HEX1(1) |+— S1 BCD A0 ——|A0 BCD Sl |HEX0(l) e
l |HEX1(2) —— S2 to Al Al to S2+—+ HEXO(Z)l l
e HEX1(3) | +— S3 Seven A2 A2 Seven S3|—— |HEX0(3) ,emmm
|HEX1(4) —+— S4 Segment A3| —— A3 Segment S4+—— |HEX0(4)
" HEX1(5) | +— S5 Decoder Decoder S51—— |HEX0(5) ~ emmm
HEX1 HEXL() | - S6 B3 B2 B1 BO A3 A2 Al A0 S61-— |HEX0(B) HEXO
BCD ADDER Cin SW(8)
D1 DO
K S3 S2 S1 SO
HEX3(0) | +— SO I SO[—— |HEX2(0)
e HEX3(1) |[+—S1 BCD A0 g A0 BCD S1|—— |HEX2(l) emmm
l |HEX3(2) —+—S2 to Al e Al to S2|—— HEX2(2)| l
e HEX3(3) [+ S3 Seven A2 E'— A2 Seven S3|—— |HEX2(3) ,emmm
| | HEX3(4) | +—— S4 Segment A3 A3 Segment S4|—— |HEX2(4) |
" HEX3(5) | +— S5 Decoder Decoder S5|—— [HEX2(5) e
HEX3 HEX3(6) | -+ S6 S6|—— |HEX2(6) HEX2

Figure 2: Block diagram for the design example.

The VHDL code for the above requirement needs the following ports in the entity:
1- Input ports: 9 Toggle Switches (four switches for BCD input A, four switches for BCD input
B, and one switch for Cin).
2- Output ports: Four Seven Segment Displays, with each seven segment has seven ports,
the total ports will be (28 ports).
During Pin Assignments step, we must make assignments for 37 port(9 + 28) which is tedious
work for doing it manually therefore we will use the " DE2_ pin_ assignments.csv " file.

36

Advanced Electronic Lab

Fourth Year 2010-2011

University of Sulaimani
College of Engineering

Electrical Engineering Department

Prepared by: Mr. Araz S. Ameen

To use the " DE2_ pin_ assignments.csv " file, we must use the names of the DE2 board in the
VHDL code for the circuit, as shown in figure2. The VHDL code for the circuit of figure2 is shown
in figured4.
Procedure:
1. Create a new Quartus Il project for the BCD adder. Select Cyclone Il EP2C35F672C6 as the
target chip, which is the FPGA chip on the Altera DE2 board.
2. Create a VHDL entity for the code in Figure 4 and include it in your project.
3. Compile the project.
4. Import "DE2_ pin_ assignments.csv" file by choosing Assignments > Import Assignments.
This opens the dialogue in figure 3 to select the file to import. Browse to the folder that
holds your experiments and press OK.

Import Assigpnments

Specify the zource and categaonies of aszsignments to import.

File name: |D:.-".-'1‘-.ra2 S Ameen/DEZ_pin_assignments. cav | t

v Copy exizhing aszsignments into bedadder. gzf.bak before imparting Advanced.

] ‘ Cancel |

Figure3: Import Assignment Window

5. Download the compiled circuit into the FPGA chip. Test the functionality of the circuit for
the following values of Cin, A, B

Cin X Y Result
0 0 0
0 4 5
0 6 4
0 9 8
0 2 9
1 0 0
1 1 4
1 5 3
1 7 8
1 9 9

Discussion:
1. Describe the function of linel, and line2 of the VHDL code of figure 3.
2. Write a VHDL code for BCD adder of figure 1 using Conditional Assignment Statement.

37

Advanced Electronic Lab

Fourth Year 2010-2011

University of Sulaimani
College of Engineering

Electrical Engineering Department Prepared by: Mr. Araz S. Ameen

LIBRARY ieeeg;
USE ieee.std_logic_1164.all;
ENTITY bcdadder 1S
PORT(SW JIN STD_LOGIC_VECTOR(8 DOWNTO 0);
HEXO0,HEX1,HEX2,HEX3 :OUT STD_LOGIC_VECTOR(0 TO 6));
END bcdadder;
ARCHITECTURE behavior OF bcdadder IS
SIGNALC :STD_LOGIC_VECTOR(1 TO 6);
SIGNAL Z :STD_LOGIC VECTOR(1 TO 3);
SIGNAL S,S1:STD_LOGIC_VECTOR(3 DOWNTO 0);
SIGNAL K,L :STD LOGIC;

COMPONENT fulladder

PORT(Cin,x,y 2IN STD_LOGIC,;
s,Cout :OUT STD_LOGIC);
END COMPONENT;
COMPONENT sevensegment
PORT(A :IN STD_LOGIC_VECTOR(3 DOWNTO 0);
S :OUT STD_LOGIC_VECTOR(0 TO 6));
END COMPONENT;
BEGIN

L<="0"; --linel
FAO:fulladder PORT MAP(SW(8),SW(0),SW(4),5(0),C(1));
FAZL:fulladder PORT MAP(C(1) ,SW(1),SW(5),Z(1),C(2));
FA2:fulladder PORT MAP(C(2) ,SW(2),SW(6),Z(2),C(3));
FA3:fulladder PORT MAP(C(3) ,SW(3),SW(7),Z(3),C(4));
FA4:fulladder PORT MAP(L,Z(1),K,S(1),C(5));

FA5:fulladder PORT MAP(C(5),Z(2),K ,S(2),C(6));

S(3)<=Z(3) XOR C(6);

K<=C(4) OR (Z(3) AND Z(2)) OR (Z(3) AND Z(1));

S1<="000" & K; --line2
DA:sevensegment PORT MAP(SW(3 DOWNTO 0),HEXO0);
DB:sevensegment PORT MAP(SW(7 DOWNTO 4),HEX1);
DO0:sevensegment PORT MAP(S ,HEX2);

D1:sevensegment PORT MAP(S1,HEX3);

END behavior;

Figure 4: VHDL code for figure 2.

38

Advanced Electronic Lab

Fourth Year 2010-2011

University of Sulaimani
College of Engineering

Electrical Engineering Department Prepared by: Mr. Araz S. Ameen

Experiment Number 6
Two Digit BCD Adders

Apparatus: PC and DE2 Board

Task: Learning: 1. Using unsigned package for addition and subtraction
2. Using Conditional Assignment Statements for circuit design.
Theory:
Two digit BCD adders is a logic circuit that consist of two BCD adders, it is used to add two 2-
digit BCD numbers, A1 A0 and B1 BO to produce the three digit BCD sum S2 S1 SO, where each
BCD digit is a 4-bit number. The block diagram of two digit BCD adder is shown in figurel.

Bl Al BO A0
! B1, B1, Bl, Blol IA13 Al, Al A10I ! B0, B0, BO, BOO| IAo3 A0, A0, AooI
I O O B O I O N
B3 BZ Bl B0 A3 A2 Al AO BS BZ Bl BO A3 A2 Al A0
K BCD Adder C. [K BCD Adder C, 1
SB SZ S1 SO S3 SZ S1 S0
b b
Ill |313 S1, S1, S.1OI |503 S0, SO, soOI
S2 S1 SO

Figure 1: Block diagram of two digit BCD adder.

Unsigned Package:
STD_LOGIC_VECTOR signals can be used as binary numbers in arithmetic circuits by including
in the code the following statement for unsigned arithmetic:
USE ieee.std_logic_unsigned.all
The std _logic_unsigned package specifies that it is legal to use the STD_LOGIC_VECTOR signal
with arithmetic operators, like (+, -). The VHDL compiler should generate a circuit that works for

unsigned numbers.

Conditional Assignment Statement:
The conditional signal assignment is used to set a signal to one of several alternative values,

the general form is: signal name <= expression WHEN logic expression ELSE ;

expression WHEN logic expression ELSE ;

) o expression ;)
As an example, the following conditional assighment statement describes an EX-NOR gate:

f<="1'WHEN x1=x2 ELSE '0';

39

Advanced Electronic Lab

Fourth Year 2010-2011

University of Sulaimani
College of Engineering

Electrical Engineering Department Prepared by: Mr. Araz S. Ameen

Design Example:
In experiment number 5, a VHDL code for a BCD adder is created by using two full adder

component and simple assignment statement. The two digit BCD adder can be created using
two instances of the BCD adder of experiment 5 in the way shown in figurel. A different
approach for describing the two-digit BCD adder in VHDL code is to specify an algorithm like the
one represented by the following pseudo-code:

1. TO=A0+ B0 11. If (T1 > 9) then
2. If (TO>9) then 12. 71 =10;

3. Z0=10; 13.C2=1;

4, C1=1; 14. Else

5. Else 15.71=0;

6. Z0=0; 16.C2=0;

7. C1=0; 17. End if

8. End if 18.51=T1-Z71
9. SO=T0—-Z0 19.S2=C2
10.T1=A1+Bl1+C1

It is reasonably straightforward to see what circuit could be used to implement this pseudo-
code. Lines 1, 9, 10, and 18 represent adders, lines 2-8 and 11-17 correspond to multiplexers,
and testing for the conditions T 0 > 9 and T1 > 9 requires comparators. A VHDL code that
corresponds to this pseudo-code is shown in figure2 using conditional assignment statement.

Procedure:

1. Create a new Quartus Il project for the two digit BCD adder. Select Cyclone Il EP2C35F672C6
as the target chip, which is the FPGA chip on the Altera DE2 board. Use the SW3_, as AO digit,
SW;_4 as Al digit, SW;,. as BO digit SW;s.4, as B1 digit.

2. Create a VHDL entity for the code in figure 2 and include it in your project.

3. Compile the project.

4. Import "DE2_ pin_ assignments.csv" file .

5. Download the compiled circuit into the FPGA chip. Test the functionality of the circuit by
trying the following values for the numbers (A1 AO) and (B1 BO).

Cin Al AO B1 BO S2 51 S0
0 00 00
0 40 05
0 62 47
0 92 38
0 99 99
1 00 00
1 40 05
1 62 47
1 92 38
1 99 99

40

Advanced Electronic Lab

Fourth Year 2010-2011

University of Sulaimani
College of Engineering

Electrical Engineering Department Prepared by: Mr. Araz S. Ameen

LIBRARY ieee;

USE ieee.std_logic_1164.all;
USE ieee.std_logic_unsigned.all;
ENTITY bcd2digit IS

PORT(SW JIN STD_LOGIC_VECTOR(15 DOWNTO 0);
HEX0, HEX1, HEX2 :OUT STD_LOGIC_VECTOR (0 TO 6);
HEX4,HEX5,HEX6,HEX7 :OUT STD_LOGIC_VECTOR(0 TO 6));

END bcd2digit;
ARCHITECTURE behavior OF bcd2digit 1S

SIGNAL Z0,71,S2 :STD_LOGIC_VECTOR(3 DOWNTO 0);
SIGNAL T0,T1,S0,S1 :STD_LOGIC_VECTOR(4 DOWNTO 0);
SIGNAL c1,c2 :STD_LOGIC;

COMPONENT sevensegment
PORT(A 2IN STD_LOGIC_VECTOR(3 DOWNTO 0);
S :OUT STD_LOGIC_VECTOR(0 TO 6));
END COMPONENT;
BEGIN
TO0<=('0' & SW(3 DOWNTO 0))+SW(11 DOWNTO 8); --T0=A0+B0
Z0<="1010" WHEN T0>"1001" ELSE "0000";
cl<='l"" WHEN T0>"1001" ELSE '0;
S0<=TO0 - Z0;
T1<=('0' & SW(7 DOWNTO 4))+SW(15 DOWNTO 12)+c1;--T1=A1+B1+C1l
Z1<="1010" WHEN T1>"1001" ELSE "0000";
c2<="1" WHEN T1>"1001" ELSE '0";
S1<=T1- 71,
S2<="000" & c2;

DO0:sevensegment PORT MAP(S0(3 DOWNTO 0),HEXO0);
D1:sevensegment PORT MAP(S1(3 DOWNTO 0),HEX1);
D2:sevensegment PORT MAP(S2(3 DOWNTO 0),HEX?2);
D4:sevensegment PORT MAP(SW(3 DOWNTO 0),HEX4);
D5:sevensegment PORT MAP(SW(7 DOWNTO 4),HEX5);
D6:sevensegment PORT MAP(SW(11 DOWNTO 8),HEX6);
D7:sevensegment PORT MAP(SW(15 DOWNTO 12),HEXT7);
END behavior;

Figure2: VHDL code for two digit BCD adder
Discussion:

1. Write a VHDL code for two digit BCD adder using the BCD adder as a component.
2. Describe briefly the task of each line in the architecture of figure 2.

41

Advanced Electronic Lab

Fourth Year 2010-2011

University of Sulaimani
College of Engineering

Prepared by: Mr. Araz S. Ameen

Electrical Engineering Department

Experiment number 7
Latches and Flip Flops

Apparatus: PC and DE2 Board
Task: Learning: 1. Using Sequential Assignment Statement
2. Simulate the design using vector waveform file.
Theory:
Latches and flip-flops are storage elements consist of logic gates and feedback connection
between inputs and outputs. Figurel shows a gated D-latch circuit, a VHDL code for the D-latch
can be written using simple assignment statement (as shown in figure2).

I
r Qd
DD

Figurel: Gated D-latch logic diagram

library ieee;
use ieee.std_logic_1164.all;
entity dlatch is

port (D, clk sin std_logic ;
Q,Qd : buffer std_logic) ;
end dlatch;
architecture behavior of dlatch is
signal s,r : std_logic;
begin

s<=D nand clk;
r<=(not D) nand clk;
Q<=snand Qd ;
Qd<=rnand Q;

end hehavior -

Figure2: VHDL code for Gated D-latch using simple assignment statement

Altera FPGAs include flip-flops and latches that are available for implementing a user’s
circuit. These flip-flops and latches can be inferred using PROCESS statement.

PROCESS Statement:

Since the order in which the sequential statements appear in VHDL code is significant,
whereas the ordering of concurrent statement is not, the sequential statements must be
separated from the concurrent statements. This is accomplished using a PROCESS statement.

42

Advanced Electronic Lab

Fourth Year 2010-2011

University of Sulaimani
College of Engineering

Electrical Engineering Department Prepared by: Mr. Araz S. Ameen

The PROCESS statement appears inside an architecture body, and it encloses other statements
within it. The general form of a PROCESS statement is shown in figure3.

General form: PROCESS (signal_name, signal_name,)

[VARIABLE declarations]

BEGIN
[Simple Signal Assignment Statement]
[Variable Assignment Statement]
[WAIT Statement]
[CASE Statement]
[IF Statement]
[LOOP Statement]

END PROCESS;

The VHDL code for the gated D-latch (figure2) can be rewritten using PROCESS statement as
shown in figure3.

LIBRARY ieee;
USE ieee.std_logic_1164.all;
ENTITY dlatch IS
PORT(D,clk :IN STD_LOGIC;
Q, Qd :BUFFER STD_LOGIC);
END dlatch;
ARCHITECTURE behavior OF dlatch IS
BEGIN
PROCESS(D,clk)
BEGIN
IF clk="1' THEN
Q<=D;
END IF;
END PROCESS;
Qd<= NOT Q;
END behavior;

Figure3: VHDL code for Gated D latch using PROCESS statement

The VHDL code of figure3 can be converted to code for positive edged triggered D flip-flop by
making some modification in the PROCESS body as follows:

PROCESS(clk)
BEGIN
IF clk'EVENT AND clk='1' THEN Q<=D;
END IF;

END PROCESS;

University of Sulaimani Advanced Electronic Lab

College of Engineering Fourth Year 2010-2011

Electrical Engineering Department Prepared by: Mr. Araz S. Ameen

Design Example:

Figure4 shows a circuit with three different storage elements: a gated D latch, a positive-edge
triggered D flip-flop, and a negative-edge triggered D flip-flop. The circuit have three inputs (D,
clock, and reset), and six outputs (A, Ad, B, Bd, C, and Cd) .The VHDL code for this circuit is
shown in figure5.

LIBRARY ieee;
USE ieee.std_logic_1164.all;
ENTITY exp7 IS
PORT(D,clock,reset :IN STD_LOGIC,
A Ad :0OUT STD_LOGIC;
B,Bd OUT STD_LOGIC;
C,Cd :OUT STD_LOGIC);
END exp7;
ARCHITECTURE behavior OF exp7 IS
SIGNALy1,y2,y3 :STD_LOGIC;
BEGIN
PROCESS(D,clock,reset)
BEGIN
IF reset="0' THEN
y1<='0
y2<="'0";
y3<='0';
ELSE
IF clock="1' THEN y1<=D;
END IF;
IF clock'EVENT AND clock="1' THEN y2<=D;
END IF;
IF clock'EVENT AND clock='0"' THEN y3<=D;
END IF;
END IF;
END PROCESS;
A<=yl,;
Ad<=NOT y1;
B <=y2;
Bd<=NOT y2;
C<=y3;
Cd<=NOTy3;
END behavior;

Figure5: VHDL code for Figure4.

44

University of Sulaimani
College of Engineering

Electrical Engineering Department

Advanced Electronic Lab
Fourth Year 2010-2011
Prepared by: Mr. Araz S. Ameen

Procedure:

1.

reset

clock

Create a new Quartus Il project for the circuit of figure4. Select Cyclone Il EP2C35F672C6
as the target chip, which is the FPGA chip on the Altera DE2 board.

Create a VHDL entity for the code in figure 5 and include it in your project.

Compile the project.

Create a vector waveform file for the circuit (from file menu, select New = Vector
Waveform File).

In vector waveform file window, select Edit - End Time - 12 usec.

In vector waveform file window, select Edit < Grid Size = 1 psec.

Insert D, clock, A, B, C signal into the vector waveform file and simulate the design for the
following value for D, clock shown below(complete the timing diagram from simulation
result)

Discussion:
1. Write a VHDL code for JK latch.
2. Write a VHDL code for JK flip-flop.

45

Advanced Electronic Lab

Fourth Year 2010-2011

University of Sulaimani
College of Engineering

Electrical Engineering Department Prepared by: Mr. Araz S. Ameen

Experiment number 8
Shift Register

Apparatus: PC and DE2 Board
Task: Using Sequential Assignment Statement to describe Shift Register.
Theory:

A flip-flop stores one bit of information. When a set of n flip-flops is used to store n bits of
information, such as n-bit number, we refer to these flip-flops as a register. A common clock is
used for each flip-flop in a register. A register that provides the ability to shift its contents is
called shift register. Figurel shows a four bit shift register that is used to shift its contents one
bit position to the right.

X |I'D QQl D QQ2 D QQ3 D QQ4

ooy

Figurel: Simple 4-bit shifts register
The data bits are loaded into the shift register in a serial fashion using the (x) input. The

Ql
Ql

contents of each flip-flop are transferred to the next flip-flop at each positive edge of the clock.
The timing diagram of the transfer is given in figure2, which shows what happens when the
signal values at (x) during eight consecutive clock cycles are (1,0, 1, 1, 1, 0, 0, 0), assuming that
the initial state of all flip-flops is O.

t t

0 1

clock A A A A A A A

Q

Q,

Q,

Q,

Figure2: Timing diagram for figurel.

46

Advanced Electronic Lab

Fourth Year 2010-2011

University of Sulaimani
College of Engineering

Electrical Engineering Department Prepared by: Mr. Araz S. Ameen

Figure3 shows a VHDL code that defines the 4-bit shift register of figurel. The initial state of
the flip-flops is set to 0 by using a reset input. The shift register has a serial input, x, and parallel
output, Q. The left-most bit in the register is Q (1), and the right-most bit is Q (4); shifting is
performed in the left-to-right direction.

library ieee;
use ieee.std_logic_1164.all;
entity shift4 is

port(X, clk, rst ;in std_logic;
Q ‘buffer std_logic_vector(1 to 4));
end shift4;
architecture behavior of shift4 is
begin
process(clk,rst)
begin

if rst="0' then Q<="0000";

elsif clk'event and clk="1" then
Q()<=x;
Q(2)<=Q(2);
Q(3)<=Q(2);
Q(4)<=Q(3);

end if;

end process;
end behavior;

Figure3: VHDL code for 4-bit shift register.
Procedure:
1. Create a new Quartus Il project for the 4-bit shift register. Select Cyclone Il EP2C35F672C6
as the target chip, which is the FPGA chip on the Altera DE2 board.
2. Create a VHDL entity for the code in figure 3 and include it in your project.
3. Compile the project.
4. Perform the following pin assignment.

Port Name | FPGA Pin No. | Description on DE2 Board
X Toggle Switch[0]

rst Toggle Switch[1]

clk Push button[0]

Q(1) LED Red[1]

Q(2) LED Red[2]

Q(3) LED Red[3]

Q(4) LED Red[4]

5. Download the compiled circuit into the FPGA chip. Test the functionality of the circuit by
completing the timing diagram shown below. Note that pressing and releasing the push
button switch represent one clock cycle.

47

Advanced Electronic Lab

Fourth Year 2010-2011

University of Sulaimani
College of Engineering

Electrical Engineering Department Prepared by: Mr. Araz S. Ameen

rst

clock

Q

Discussion:
1. Show by block diagrams the types of registers.
2. Write a VHDL code for each type of register.

48

Advanced Electronic Lab

Fourth Year 2010-2011

University of Sulaimani

College of Engineering

Prepared by: Mr. Araz S. Ameen

Electrical Engineering Department

Experiment number 9
Synchronous Counters

Apparatus: PC and DE2 Board
Task: Using Sequential Assignment Statement and arithmetic package to describe Counters.
Theory:

The term synchronous refers to events that have a fixed time relationship with each other. A
synchronous counter is one in which all the flip-flops in the counter are clocked at the same
time by a common clock pulse. Figurel shows a 4-bit synchronous binary counter using T-type
flip-flop. The LSBT flip-flop must operate in toggle state.

T ol% 1 ol T o0l [T ol%

ooy

Figurel: 4-bit synchronous binary counter using T flip-flop.

Ol

A VHDL code for figurel can be written using four instances of T flip-flop and simple
assignment statement. Figure2 shows a VHDL code for the 4-bit synchronous binary counter

using process statement and unsigned arithmetic package.

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;
entity count4 is

port(clk, rst ;in std_logic;
Q :out std_logic_vector(3 DOWNTO));
end count4;
architecture behavior of count4 is
signal count : std_logic_vector(3 DOWNTO);
begin
process(rst,clk)
begin

if rst='0' then count<="0000";
elsif clk'event and clk='1' then count<= count+1;
end if;
end process;
Q<=count;
END behavior;

Figure2: VHDL code of 4-bit counter using process.

49

University of Sulaimani

College of Engineering

Electrical Engineering Department

Procedure:

1. Create a new Quartus Il project for the 4-bit counter. Select Cyclone Il EP2C35F672C6 as

the target chip, which is the FPGA chip on the Altera DE2 board.

2. Create a VHDL entity for the code in figure 2 and include it in your project.

3. Compile the project.

4. Perform the following pin assignment.

Port Name | FPGA Pin No. | Description on DE2 Board
rst Toggle Switch[0]

clk Push button[0]

Q(0) LED Red[0]

Q(1) LED Red[1]

Q(2) LED Red[2]

Q(3) LED Red[3]

5. Download the compiled circuit into the FPGA chip and test the functionality of the circuit.
Note that pressing and releasing the push button switch represent one clock cycle.

Discussion:

1. Write a VHDL code for the circuit of figurel.
2. Modify the code of figure2 to operate in down mode

50

Advanced Electronic Lab
Fourth Year 2010-2011
Prepared by: Mr. Araz S. Ameen

