

University of Sulaimani
College of Engineering
Electrical Engineering Department

Course Book of

2010-2011

Advanced Electronics Lab.

Mr. Araz Sabir Ameen
M.Sc. in

Electronics & Communications

University of Sulaimani Advanced Electronic Lab

College of Engineering Fourth Year 2010-2011

Electrical Engineering Department Prepared by: Mr. Araz S. Ameen

2

Figure 1: The DE2 package contents.

The DE2 package includes:

ALTERA DE2 Development and Education Board
DE2 Package:

The DE2 package contains all components needed to use the DE2 board in conjunction with a
computer that runs the Microsoft Windows software and Quartus II software installed on it.
Package Contents
Figure 1 shows a photograph of the DE2 package.

• DE2 board.
• USB Cable for FPGA programming.
• 9V DC wall-mount power supply

Layout and Components:
A photograph of the DE2 board is shown in Figure 2. It depicts the layout of the board

and indicates the location of the connectors and key components.

University of Sulaimani Advanced Electronic Lab

College of Engineering Fourth Year 2010-2011

Electrical Engineering Department Prepared by: Mr. Araz S. Ameen

3

Figure 2: The DE2 board.

The DE2 board has Altera Cyclone® II 2C35 FPGA device in addition to all other input and

output devices (peripherals) that are tied to the FPGA pins.
The following hardware (input and output devices) is used in the experiments:

• 4 push button switches
• 18 toggle switches
• 18 red user LEDs
• 9 green user LEDs
• 8 Common Anode Seven Segment Display
• 50-MHz oscillator and 27-MHz oscillator for clock sources

In order to use the DE2 board, the user has to be familiar with the Quartus II software. The
necessary knowledge can be acquired from the first experiment (Quartus II Introduction Using
VHDL Design).

Pin Assignments:

A lists of the pin names on the Cyclone II FPGA that are connected to the push button
switches, toggle switches, LED’s, 7-segment displays, and oscillators is given in the following
tables.

University of Sulaimani Advanced Electronic Lab

College of Engineering Fourth Year 2010-2011

Electrical Engineering Department Prepared by: Mr. Araz S. Ameen

4

Table 1: Pin assignments for the pushbutton switches.

Signal Name FPGA Pin No. Description
KEY[0] PIN_G26 Push button[0]
KEY[1] PIN_N23 Push button[1]
KEY[2] PIN_P23 Push button[2]
KEY[3] PIN_W26 Push button[3]

Table 2: Pin assignments for the toggle switches.

Signal Name FPGA Pin No. Description
SW[0] PIN_N25 Toggle Switch[0]
SW[1] PIN_N26 Toggle Switch[1]
SW[2] PIN_P25 Toggle Switch[2]
SW[3] PIN_AE14 Toggle Switch[3]
SW[4] PIN_AF14 Toggle Switch[4]
SW[5] PIN_AD13 Toggle Switch[5]
SW[6] PIN_AC13 Toggle Switch[6]
SW[7] PIN_C13 Toggle Switch[7]
SW[8] PIN_B13 Toggle Switch[8]
SW[9] PIN_A13 Toggle Switch[9]
SW[10] PIN_N1 Toggle Switch[10]
SW[11] PIN_P1 Toggle Switch[11]
SW[12] PIN_P2 Toggle Switch[12]
SW[13] PIN_T7 Toggle Switch[13]
SW[14] PIN_U3 Toggle Switch[14]
SW[15] PIN_U4 Toggle Switch[15]
SW[16] PIN_V1 Toggle Switch[16]
SW[17] PIN_V2 Toggle Switch[17]

Table 3: Pin assignments for the LED’s.

Signal Name FPGA Pin No. Description

LEDR[0] PIN_AE23 LED Red[0]

LEDR[1] PIN_AF23 LED Red[1]

LEDR[2] PIN_AB21 LED Red[2]

LEDR[3] PIN_AC22 LED Red[3]

LEDR[4] PIN_AD22 LED Red[4]

LEDR[5] PIN_AD23 LED Red[5]

LEDR[6] PIN_AD21 LED Red[6]

LEDR[7] PIN_AC21 LED Red[7]

University of Sulaimani Advanced Electronic Lab

College of Engineering Fourth Year 2010-2011

Electrical Engineering Department Prepared by: Mr. Araz S. Ameen

5

LEDR[8] PIN_AA14 LED Red[8]

LEDR[9] PIN_Y13 LED Red[9]

LEDR[10] PIN_AA13 LED Red[10]

LEDR[11] PIN_AC14 LED Red[11]

LEDR[12] PIN_AD15 LED Red[12]

LEDR[13] PIN_AE15 LED Red[13]

LEDR[14] PIN_AF13 LED Red[14]

LEDR[15] PIN_AE13 LED Red[15]

LEDR[16] PIN_AE12 LED Red[16]

LEDR[17] PIN_AD12 LED Red[17]

LEDG[0] PIN_AE22 LED Green[0]

LEDG[1] PIN_AF22 LED Green[1]

LEDG[2] PIN_W19 LED Green[2]

LEDG[3] PIN_V18 LED Green[3]

LEDG[4] PIN_U18 LED Green[4]

LEDG[5] PIN_U17 LED Green[5]

LEDG[6] PIN_AA20 LED Green[6]

LEDG[7] PIN_Y18 LED Green[7]

LEDG[8] PIN_Y12 LED Green[8]

Figure 3: Position and index of each segment in a 7-segment display.

Table 4: Pin assignments for the seven segment displays

Signal Name FPGA Pin No. Description

HEX0[0] PIN_AF10 Seven Segment Digit 0[0]

HEX0[1] PIN_AB12 Seven Segment Digit 0[1]

HEX0[2] PIN_AC12 Seven Segment Digit 0[2]

HEX0[3] PIN_AD11 Seven Segment Digit 0[3]

HEX0[4] PIN_AE11 Seven Segment Digit 0[4]

HEX0[5] PIN_V14 Seven Segment Digit 0[5]

HEX0[6] PIN_V13 Seven Segment Digit 0[6]

University of Sulaimani Advanced Electronic Lab

College of Engineering Fourth Year 2010-2011

Electrical Engineering Department Prepared by: Mr. Araz S. Ameen

6

HEX1[0] PIN_V20 Seven Segment Digit 1[0]

HEX1[1] PIN_V21 Seven Segment Digit 1[1]

HEX1[2] PIN_W21 Seven Segment Digit 1[2]

HEX1[3] PIN_Y22 Seven Segment Digit 1[3]

HEX1[4] PIN_AA24 Seven Segment Digit 1[4]

HEX1[5] PIN_AA23 Seven Segment Digit 1[5]

HEX1[6] PIN_AB24 Seven Segment Digit 1[6]

HEX2[0] PIN_AB23 Seven Segment Digit 2[0]

HEX2[1] PIN_V22 Seven Segment Digit 2[1]

HEX2[2] PIN_AC25 Seven Segment Digit 2[2]

HEX2[3] PIN_AC26 Seven Segment Digit 2[3]

HEX2[4] PIN_AB26 Seven Segment Digit 2[4]

HEX2[5] PIN_AB25 Seven Segment Digit 2[5]

HEX2[6] PIN_Y24 Seven Segment Digit 2[6]

HEX3[0] PIN_Y23 Seven Segment Digit 3[0]

HEX3[1] PIN_AA25 Seven Segment Digit 3[1]

HEX3[2] PIN_AA26 Seven Segment Digit 3[2]

HEX3[3] PIN_Y26 Seven Segment Digit 3[3]

HEX3[4] PIN_Y25 Seven Segment Digit 3[4]

HEX3[5] PIN_U22 Seven Segment Digit 3[5]

HEX3[6] PIN_W24 Seven Segment Digit 3[6]

HEX4[0] PIN_U9 Seven Segment Digit 4[0]

HEX4[1] PIN_U1 Seven Segment Digit 4[1]

HEX4[2] PIN_U2 Seven Segment Digit 4[2]

HEX4[3] PIN_T4 Seven Segment Digit 4[3]

HEX4[4] PIN_R7 Seven Segment Digit 4[4]

HEX4[5] PIN_R6 Seven Segment Digit 4[5]

HEX4[6] PIN_T3 Seven Segment Digit 4[6]

HEX5[0] PIN_T2 Seven Segment Digit 5[0]

HEX5[1] PIN_P6 Seven Segment Digit 5[1]

HEX5[2] PIN_P7 Seven Segment Digit 5[2]

HEX5[3] PIN_T9 Seven Segment Digit 5[3]

HEX5[4] PIN_R5 Seven Segment Digit 5[4]

HEX5[5] PIN_R4 Seven Segment Digit 5[5]

University of Sulaimani Advanced Electronic Lab

College of Engineering Fourth Year 2010-2011

Electrical Engineering Department Prepared by: Mr. Araz S. Ameen

7

HEX5[6] PIN_R3 Seven Segment Digit 5[6]

HEX6[0] PIN_R2 Seven Segment Digit 6[0]

HEX6[1] PIN_P4 Seven Segment Digit 6[1]

HEX6[2] PIN_P3 Seven Segment Digit 6[2]

HEX6[3] PIN_M2 Seven Segment Digit 6[3]

HEX6[4] PIN_M3 Seven Segment Digit 6[4]

HEX6[5] PIN_M5 Seven Segment Digit 6[5]

HEX6[6] PIN_M4 Seven Segment Digit 6[6]

HEX7[0] PIN_L3 Seven Segment Digit 7[0]

HEX7[1] PIN_L2 Seven Segment Digit 7[1]

HEX7[2] PIN_L9 Seven Segment Digit 7[2]

HEX7[3] PIN_L6 Seven Segment Digit 7[3]

HEX7[4] PIN_L7 Seven Segment Digit 7[4]

HEX7[5] PIN_P9 Seven Segment Digit 7[5]

HEX7[6] PIN_N9 Seven Segment Digit 7[6]

Table 5: Pin assignments for the clock inputs

Signal Name FPGA Pin No. Description

CLOCK_27 PIN_D13 27 MHz clock input

CLOCK_50 PIN_N2 50 MHz clock input

Syllabus

Time(hour) Page

Experiment

2 5 Quartus II Introduction Using VHDL Design 1
2 21 Basic Structure of VHDL Code 2
2 24 BCD to Seven Segment Decoder 3

2 28 N-Bit Binary Adder 4
2 32 BCD Adder 5

2 36 Two Digit BCD Adder 6
2 39 Latches and Flip Flops 7
2 43 Shift Registers 8
2 46 Counters 9

2 State Machine Design 10

University of Sulaimani Advanced Electronic Lab

College of Engineering Fourth Year 2010-2011

Electrical Engineering Department Prepared by: Mr. Araz S. Ameen

8

Experiment number 1
Quartus II Introduction Using VHDL Design

Apparatus Required: DE2 Board, PC.
Task

1. Creating a project

: This experiment introduces the basic features of the Quartus II software. It shows how the
software can be used to design and implement a circuit specified by using the VHDL
hardware description language. It makes use of the graphical user interface to invoke the
Quartus II commands. Doing this experiment requires the following six steps:

2. Design entry using VHDL code.
3. Compiling a designed circuit.
4. Simulating the designed circuit.
5. Assigning the circuit inputs and outputs to specific pins on the FPGA.
6. Programming and configuring the FPGA chip on Altera’s DE2 board.

Figure 1: The main Quartus II display.

Getting Started:
Each logic circuit, or subcircuit, being designed with Quartus II software is called a project.

The software works on one project at a time and keeps all information for that project in a
single directory (folder) in the file system. To begin a new logic circuit design, the first step is to
create a directory to hold its files. To hold the design files for this experiment, we will use a
directory (exp1). The running example for this experiment is a simple circuit for two-way light
control.
Start the Quartus II software. You should see a display similar to the one in Figure 1. This display
consists of several windows that provide access to all the features of Quartus II software, which
the user selects with the computer mouse

University of Sulaimani Advanced Electronic Lab

College of Engineering Fourth Year 2010-2011

Electrical Engineering Department Prepared by: Mr. Araz S. Ameen

9

1. Select File > New Project Wizard to reach the window shown in fig.2, which indicates the
capability of this wizard. You can skip this window in subsequent projects by checking the
box (Don’t show me this introduction again).

Step 1: Starting a New Project
To start working on a new design we first have to define a new design project. Quartus II

software makes the designer’s task easy by providing support in the form of a wizard. Create a
new project as follows:

Figure 2: Tasks performed by the wizard.

2. Press Next to get the window in fig.3:

Figure 3: Creation of a new project.

University of Sulaimani Advanced Electronic Lab

College of Engineering Fourth Year 2010-2011

Electrical Engineering Department Prepared by: Mr. Araz S. Ameen

10

3. Set the working directory to be exp1. The project must have a name, which is usually the
same as the top-level design entity that will be included in the project. Choose light as
the name for both the project and the top-level entity, as shown below. Press Next. Since
we have not yet created the directory exp1, Quartus II software displays the pop-up box
in figure 4 asking if it should create the desired directory. Click Yes, which leads to the
window in figure 5.

 Figure 4: Quartus II software can create a new directory for the project.

4. The wizard makes it easy to specify which existing files (if any) should be included in the
project. Assuming that we do not have any existing files, click Next, which leads to the
window in figure6.

Figure 5: The wizard can include user-specified design files.

University of Sulaimani Advanced Electronic Lab

College of Engineering Fourth Year 2010-2011

Electrical Engineering Department Prepared by: Mr. Araz S. Ameen

11

Figure 6: Choose the device family and a specific device.

5. We have to specify the type of device in which the designed circuit will be implemented.
Choose CycloneII as the target device family. From the list of available devices, choose
the device called EP2C35F672C6 which is the FPGA used on Altera’s DE2 board. Press
Next, which opens the window in figure 7.

Figure 7: Other EDA tools can be specified.

University of Sulaimani Advanced Electronic Lab

College of Engineering Fourth Year 2010-2011

Electrical Engineering Department Prepared by: Mr. Araz S. Ameen

12

6. The user can specify any third-party tools that should be used. Since we will rely solely on
Quartus II tools, we will not choose any other tools. Press Next.

7. A summary of the chosen settings appears in the screen shown in figure 8.

Figure 8: Summary of the project settings.

8. Press Finish, which returns to the main Quartus II window, but with light specified as the
new project, in the display title bar, as indicated in figure 9.

Figure 9: The Quartus II display for the created project.

University of Sulaimani Advanced Electronic Lab

College of Engineering Fourth Year 2010-2011

Electrical Engineering Department Prepared by: Mr. Araz S. Ameen

13

Figure 10: The light controller circuit.

The required circuit is described by the VHDL code in figure 11. Note that the VHDL entity is
called light to match the name given in figure 3, which was specified when the project was
created. This code can be typed into a file by using the Quartus II text editing facilities. While the
file can be given any name, it is a common designers’ practice to use the same name as the
name of the top-level VHDL entity. The file name must include the extension vhd, which
indicates a VHDL file. So, we will use the name light.vhd.

Step 2: Design Entry Using VHDL Code
As a design example, we will use the two-way light controller circuit shown in figure 10. The

circuit can be used to control a single light from either of the two switches, x1 and x2, where a
closed switch corresponds to the logic value 1. The truth table for the circuit is also given in the
figure. Note that this is just the Exclusive-OR function of the inputs x1 and x2, but we will specify
it using the gates shown.

Figure 11: VHDL code for the circuit in figure 10.

1. Select File > New to get the window in figure 12, choose VHDL File, and click OK. This
opens the Text Editor window.

2. Specify a name for the file that will be created. Select File > Save As to open the pop-up
box depicted in figure 13. In the box labeled Save as type choose VHDL File. In the box
labeled File name type light. Put a checkmark in the box Add file to current project.

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
ENTITY light IS
 PORT (x1, x2 : IN STD_LOGIC;
 f : OUT STD_LOGIC) ;
END light;
ARCHITECTURE behavior OF light IS
 BEGIN
 f<= (x1 AND NOT x2) OR (NOT x1 AND x2);
END behavior;

University of Sulaimani Advanced Electronic Lab

College of Engineering Fourth Year 2010-2011

Electrical Engineering Department Prepared by: Mr. Araz S. Ameen

14

3. Click Save, which puts the file into the directory exp1 and leads to the Text Editor

window shown in figure 14. Maximize the Text Editor window and enter the VHDL code
in figure 11 into it. Save the file by typing File > Save.

Figure 12: Choose to prepare a VHDL file.

Figure 13: Name the file.

Figure 14: Text Editor Window.

University of Sulaimani Advanced Electronic Lab

College of Engineering Fourth Year 2010-2011

Electrical Engineering Department Prepared by: Mr. Araz S. Ameen

15

1. Run the Compiler by selecting Processing > Start Compilation, or by clicking on the

toolbar icon that looks like a purple triangle .

Step 3: Compiling a Designed Circuit
The VHDL code in the file light.vhd is processed by several Quartus II tools that analyze the

code, synthesize the circuit, and generate an implementation of it for the target chip. These
tools are controlled by the application program called the Compiler.

2. The compilation moves through various stages, its progress is reported in a window on
the left side of the Quartus II display.

3. Successful (or unsuccessful) compilation is indicated in a pop-up box. Acknowledge it by
clicking OK, which leads to the Quartus II display in figure 15.

4. In the message window, at the bottom of the figure, various messages are displayed. In
case of errors, there will be appropriate messages given.

5. When the compilation is finished, a compilation report is produced.

Figure 15: Display after a successful compilation.

University of Sulaimani Advanced Electronic Lab

College of Engineering Fourth Year 2010-2011

Electrical Engineering Department Prepared by: Mr. Araz S. Ameen

16

1. Open the Waveform Editor window by selecting File > New, which gives the window
shown in figure 16.

Step 4: Simulating the Designed Circuit
Before implementing the designed circuit in the FPGA chip on the DE2 board, it is prudent to

simulate it to ascertain its correctness. Quartus II software includes a simulation tool that can be
used to simulate the behavior of a designed circuit. A designed circuit can be simulated in two
ways. The simplest way is to assume that logic elements and interconnection wires in the FPGA
are perfect, thus causing no delay in propagation of signals through the circuit. This is called
functional simulation. A more complex alternative is to take all propagation delays into account,
which leads to timing simulation. Typically, functional simulation is used to verify the functional
correctness of a circuit as it is being designed.

Figure 16: Need to prepare a new file.

2. Click on the Other Files tab to reach the window displayed in figure 17. Choose Vector
Waveform File and click OK

Figure 17: Choose to prepare a test-vector file.

University of Sulaimani Advanced Electronic Lab

College of Engineering Fourth Year 2010-2011

Electrical Engineering Department Prepared by: Mr. Araz S. Ameen

17

3. The Waveform Editor window is depicted in figure 18. Save the file under the name
light.vwf; note that this changes the name in the displayed window. Set the desired
simulation to run from (0 to 200) ns by selecting Edit > End Time and entering 200 ns in
the dialog box that pops up.

4. Selecting View > Fit in Window displays the entire simulation range of 0 to 200 ns in the
window.

Figure 18: The Waveform Editor Window.

5. To include the input and output nodes of the circuit to be simulated. Click
Edit > Insert Node or Bus to open the window in figure 19.

Figure 19: The Insert Node or Bus dialogue.

6. Click on the button labeled Node Finder to open the window in Figure 20. The Node
Finder utility has a filter used to indicate what type of nodes are to be found. Since we
are interested in input and output pins, set the filter to Pins: all. Click the List button to
find the input and output nodes as indicated on the left side of the figure.

Figure 20: Selecting nodes to insert into the Waveform Editor.

University of Sulaimani Advanced Electronic Lab

College of Engineering Fourth Year 2010-2011

Electrical Engineering Department Prepared by: Mr. Araz S. Ameen

18

7. Click on the x1 signal in the Nodes Found box in figure 20, and then click the > sign to add
it to the Selected Nodes box on the right side of the figure. Do the same for x2 and f.
Click OK to close the Node Finder window, and then click OK in the window of figure 19.
This leaves a fully displayed Waveform Editor window, as shown in figure 21.

Figure 21: The nodes needed for simulation.

8. Specify the logic values to be used for the input signals x1 and x2 during simulation. The
logic values at the output f will be generated automatically by the simulator.

9. Click on the waveform name for the x1 node. Once a waveform is selected, the editing
commands in the Waveform Editor can be used to draw the desired waveforms.
Commands are available for setting a selected signal to 0, 1, unknown (X), high
impedance (Z), don’t care (DC), inverting its existing value (INV), or defining a clock
waveform. Each command can be activated by using the Edit > Value command Set x1 to
0 in the time interval 0 to 100 ns, which is probably already set by default. Next, set x1 to
1 in the time interval 100 to 200 ns. Do this by pressing the mouse at the start of the
interval and dragging it to its end, which highlights the selected interval, and choosing the
logic value 1 in the toolbar. Make x2 = 1 from 50 to 100 ns and also from 150 to 200 ns,
which corresponds to the truth table in Figure 10. This should produce the image in figure
22. Observe that the output f is displayed as having an unknown value at this time, which
is indicated by a hashed pattern; its value will be determined during simulation. Save the
file.

Figure 22: Setting of test values.

University of Sulaimani Advanced Electronic Lab

College of Engineering Fourth Year 2010-2011

Electrical Engineering Department Prepared by: Mr. Araz S. Ameen

19

10. Select Assignments > Settings to open the Settings window. On the left side of this
window click on Simulator to display the window in figure 23, choose Functional as the
simulation mode, and click OK.

Figure 23: Specifying the simulation mode.

11. Select Processing > Generate Functional Simulation Netlist.
12. A simulation run is started by Processing > Start Simulation. Quartus II software indicates

its successful completion and displays a Simulation Report illustrated in figure 24. If your
report window does not show the entire simulation time range, click on the report
window to select it and choose View > Fit in Window. Observe that the output f is as
specified in the truth table of figure 10.

Figure 24: The result of Functional Simulation.

University of Sulaimani Advanced Electronic Lab

College of Engineering Fourth Year 2010-2011

Electrical Engineering Department Prepared by: Mr. Araz S. Ameen

20

1. Select Assignments > Assignment Editor to reach the window in figure 25.

Step 5: Pin Assignment
During the compilation, the Quartus II Compiler was free to choose any pins on the selected

FPGA to serve as inputs and outputs. However, the DE2 board has hardwired connections
between the FPGA pins and the other components on the board. We will use two toggle
switches, labeled SW0 and SW1, to provide the external inputs x1 and x2. These switches are
connected to the FPGA pins N25 and N26, respectively. We will connect the output f to the
green light-emitting diode labeled LEDG0, which is hardwired to the FPGA pin AE22.

Figure 25: The Assignment Editor Window

2. Under Category select Pin. Double-click on the entry <<new>> which is highlighted in blue
in the column labeled To. The drop-down menu in figure 26 will appear. Click on x1 as the
first pin to be assigned; this will enter x1 in the displayed table.

Figure 26: The drop-down menu displays the input and output names.

3. Double-click on the box to the right of this new x1 entry, in the column labeled Location.
Type the name of the pin (N25) in the Location box. Use the same procedure to assign
input x2 to pin N26 and output f to pin AE22, which results in the image in figure 27. To
save the assignments made, choose File > Save.

4. Recompile the circuit, so that it will be compiled with the correct pin assignments.

University of Sulaimani Advanced Electronic Lab

College of Engineering Fourth Year 2010-2011

Electrical Engineering Department Prepared by: Mr. Araz S. Ameen

21

Figure 27: The Complete Assignment

1. Make sure that the USB cable is properly connected.

Step 6: Programming and Configuring the FPGA Device
 The FPGA device must be programmed and configured to implement the designed circuit.
The required configuration file is generated by the Quartus II Compiler. Altera’s DE2 board
allows the configuration to be done in two different ways, known as JTAG and AS modes. We
will use the JTAG mode in our experiments. In the JTAG mode, the configuration data is loaded
directly into the FPGA device. If the FPGA is configured in this manner, it will retain its
configuration as long as the power remains turned on. The configuration information is lost
when the power is turned off.

2. Turn on the power supply switch on the board.
3. Flip the RUN/PROG switch into the RUN position.
4. Select Tools > Programmer to reach the window in figure 28. Here it is necessary to specify

the programming hardware and the mode that should be used. If not already chosen by
default, select JTAG in the Mode box. Observe that the configuration file light.sof is listed
in the window in Figure 28.

5. Click on the Program/Configure check box in figure 28.
6. Press Start in the window in figure 28. An LED on the board will light up when the

configuration data has been downloaded successfully. If you see an error reported by
Quartus II software indicating that programming failed, then check to ensure that the
board is properly powered on.

Figure 28: The Programmer Window

University of Sulaimani Advanced Electronic Lab

College of Engineering Fourth Year 2010-2011

Electrical Engineering Department Prepared by: Mr. Araz S. Ameen

22

Experiment number 2
Basic Structure of VHDL Code

Apparatus: PC and DE2 Board
Task: Learn the basic parts of VHDL components

LIBRARY
Declaration

ENTITY
Declaration

ARCHITECTURE

Entity

Theory:
VHDL is a hardware description language; it describes the behavior of an electronic circuit or

system from which the physical circuit or system can be implemented. VHDL stands for VHSIC
Hardware Description Language. VHSIC is itself an abbreviation for Very High Speed Integrated
Circuit. A circuit or sub-circuit described with VHDL code is called a design entity or just
entity.Figure1 shows the general structure of an entity. It has three main parts:

Figure1: The general structure of a VHDL design entity

1- LIBRARY declarations: Contains a list of all libraries to be used in the design.
 General form: LIBRARY library_name ;
 USE library name.package_name.all ;

2- ENTITY declaration: Specifies the input and output pins of the circuit. The name of the
entity can be any legal VHDL name. The input and output signals are specified using the
keyword PORT. Whether each port (pin) is an input, output, or bidirectional are
specified by the mode of the port. The available modes are summarized in table1.

 General form: ENTITY entity_name IS
 PORT (signal_name, signal_name, … : mode type_name;
 signal_name, signal_name, … : mode type_name);
 END entity_name;

University of Sulaimani Advanced Electronic Lab

College of Engineering Fourth Year 2010-2011

Electrical Engineering Department Prepared by: Mr. Araz S. Ameen

23

3- ARCHITECTURE provides the circuit details for an entity. It has two main parts: the
declarative region and architecture body.

• The declarative region appears preceding the BEGIN keyword. It can be used to
declare signals, user defined data types, constants, components, and attributes.

• The functionality of the entity is specified in the architecture body, which follows
the BEGIN keyword. This specification involves statements that define the logic
function in the circuit.

General form: ARCHITECTURE architecture_name OF entity_name IS
 [SIGNAL declarations]
 [CONSTANT declarations]
 [TYPE declarations]
 [COMPONENT declarations]
 [ATTRIBUTE declarations]
 BEGIN
 COMPONENT instantiation statements;
 CONCURRENT ASSIGNMENT statements;
 PROCESS statements;
 GENERATE statements;
 END architecture_name;

Table 1: The possible modes for signals that are entity ports

Mode Purpose

IN Used for a signal that is an input to an entity.

OUT
Used for signal that is an output from an entity. The value of the signal can not
be used inside the entity. This means that in an assignment statement, the
signal can appear only to the left of the <= operator.

INOUT Used for a signal that is both an input to an entity and an output from the

BUFFER
Used for a signal that is an output from an entity. The value of the signal can be
used inside the entity, which means that in an assignment statement, the signal
can be appear both on the left and right sides of the <= operator.

Design Example:

Figure 2 shows the block diagram, and logic diagram of a full adder circuit. Figure 3 gives the
VHDL code for the full adder of figure2.
The entity declaration specifies the input and output signals. The input port Cin is the carry-in,
and the bits to be added are the input ports x and y. The output ports are the sum, s, and the
carry-out, Cout. The entity represents the block diagram of the full adder (figure 2a).

University of Sulaimani Advanced Electronic Lab

College of Engineering Fourth Year 2010-2011

Electrical Engineering Department Prepared by: Mr. Araz S. Ameen

24

The architecture defines the functionality of the full adder using logic equations. The logic
equations used in the architecture body is the simple type of concurrent assignment
statements. The architecture represents the logic diagram of the full adder (figure 2b).

Cout

s

x

y

Cin
F.A

x

y

Cin

s

Cout

(a) (b)

Figure 2: a) Block diagram of full adder
 b) Logic diagram of full adder

Figure 3: VHDL code of a full adder.

Port Name

Procedure:

1. Create a new Quartus II project for the full adder circuit. Select Cyclone II EP2C35F672C6
as the target chip, which is the FPGA chip on the Altera DE2 board.

2. Create a VHDL entity for the code in Figure 3 and include it in your project.
3. Compile the design, then select Tools > Netlist Viewer > RTL Viewer.
4. Include in your project the following pin assignments for the DE2 board, and recompile the

project.

FPGA Pin No. Description on DE2 Board
cin PIN N25 Toggle Switch[0]
x PIN N26 Toggle Switch[1]
y PIN P25 Toggle Switch[2]
s PIN AE23 LED Red[0]
cout PIN AF23 LED Red[1]

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
ENTITY fulladder IS
PORT (cin , x , y :IN STD_LOGIC ;
 s, cout :OUT STD_LOGIC) ;
END fulladder ;
ARCHITECTURE behavior OF fulladder IS
 BEGIN
 s<= x XOR y XOR cin ;
 cout<=(x AND y) OR (x AND cin) OR (y AND cin) ;
END behavior;

University of Sulaimani Advanced Electronic Lab

College of Engineering Fourth Year 2010-2011

Electrical Engineering Department Prepared by: Mr. Araz S. Ameen

25

5. Download the compiled circuit into the FPGA chip. Test the functionality of the circuit
(verify its truth table) by toggling the switches and observing the LEDs.

1. Specify the three basic parts of the VHDL code of the full adder.
Discussion:

2. Write discrete VHDL codes for (half adder, half subtracter, and full subtracter).

University of Sulaimani Advanced Electronic Lab

College of Engineering Fourth Year 2010-2011

Electrical Engineering Department Prepared by: Mr. Araz S. Ameen

26

Experiment Number 3
BCD to Seven Segment Decoder

Apparatus: PC and DE2 Board
Task: Learning the following: Using STD_LOGIC_VECTOR types, the use of Selected Signal

Assignment and OTHERS, and Seven segment display.

Theory:
1. STD_LOGIC_VECTOR type:
To use this type, we must include the two statements in the VHDL code

These statements provide access to the std_logic_1164 package in the library ieee, which
defines the STD_LOGIC data type. The following values are legal for STD_LOGIC: 0, 1, Z, -, L, H, U,
X, and W. Only the first four values are useful for logic circuits. The value Z represent high
impedance, and – stands for don’t care. The STD_LOGIC_VECTOR represents an array of
STD_LOGIC.
Example:

• c (1) = 0, c (2) = 1, c (3) = 0, c (4) = 1, x (3) = 0, x (2) = 1, x (1) = 0, x (0) = 0.

 SIGNAL c : STD_LOGIC_VECTOR (1 TO 4);
 SIGNAL x : STD_LOGIC_VECTOR (3 DOWNTO 0);
c and x are both 4-bit number. Now if c= 0101 and x=0100 then:

2. Selected Signal Assignment and OTHERS:
 The selected signal assignment is a type of concurrent assignment statement; it is used to
set the value of a signal to one of several alternatives based on a selection criterion. The
general form is:

The statement(S <= OTHERS='0') set each bit of S to 0.
Example:

This Example describes a 2 to 1 multiplexer with Sel as the select input. In a selected signal
assignment, all possible values of the select input, Sel in this case, must be explicitly listed in the
code. The word OTHERS provides an easy way to meet this requirement. OTHERS represent all
possible values not already listed. In this case the other possible values are 1, Z, -, and so on.

LIBRARY IEEE;
USE IEEE. STD_LOGIC_1164. ALL;

WITH expression SELECT
signal name <= expression WHEN constant value ,
 expression WHEN constant value ,
 .
 .
 expression WHEN constant value ;

SIGNAL x1, x2, Sel, f : STD_LOGIC;
WITH Sel SELECT
 f <= x1 WHEN '0' ,
 x2 WHEN OTHERS ;

University of Sulaimani Advanced Electronic Lab

College of Engineering Fourth Year 2010-2011

Electrical Engineering Department Prepared by: Mr. Araz S. Ameen

27

3. Seven Segment Display:
Seven segment displays are used in many type of products. These displays are used with logic

circuits that decode BCD number and activate the appropriate digit on the display. There are
two types of seven segment display; common anode and common cathode.

• In common anode type, the segments will light if logic 0 applied to its terminals.
• In common cathode type, the segments will light if logic 1 applied to its terminals.

The seven segment displays on the DE2 board are of common anode type.

S0

S1

S2

S3

S4

S5 S6

0 3 4 5 6 7 8

S1

S2

1 2 9

Design Example:
A BCD to seven segment decoder is a combinational circuit that converts a decimal digit in

BCD to an appropriate code for the selection of segments in a display indicator used for
displaying the decimal digit in a familiar form. The seven outputs of the decoder (S0, S1, S2, S3,
S4, S5, and S6) select the corresponding segments in the display, as shown in figure1. The six
invalid combinations should result in blank display.

Figure2 shows the VHDL code for the design example, the logic expressions for the seven
segments outputs (S0, S1, S2, S3, S4, S5, S6) must be derived using Karnaugh map.

Another VHDL code style for the design example is shown in figure3; this style uses selected
signal assignment instead of simple assignment statement. This style represents the truth table
of the functions (table1), therefore the minimization step using Karnaugh map not required.

Figure 1: Seven Segment Display

Figure 2: VHDL Code for BCD to Seven Segment Decoder using Simple Assignment Statement

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
ENTITY sevensegment IS
 PORT (a : IN STD_LOGIC_VECTOR (3 DOWNTO 0) ;
 s :OUT STD_LOGIC_VECTOR(0 TO 6));
END sevensegment;
ARCHITECTURE behavior OF sevensegment IS
 BEGIN
 s(0)<= …………………………..;
 s(1)<= …………………………..;
 s(2)<= …………………………..;
 s(3)<= …………………………..;
 s(4)<= …………………………..;
 s(5)<= …………………………..;
 s(6)<= …………………………..;
END behavior;

University of Sulaimani Advanced Electronic Lab

College of Engineering Fourth Year 2010-2011

Electrical Engineering Department Prepared by: Mr. Araz S. Ameen

28

Figure 3: VHDL Code for BCD to Seven Segment Decode using Selected Signal Assignments

Table 1: Truth table of BCD to common anode seven segment display

BCD Code Seven Segment outputs
A3 A2 A1 A0 S0 S1 S2 S3 S4 S5 S6
0 0 0 0 0 0 0 0 0 0 1
0 0 0 1 1 0 0 1 1 1 1
0 0 1 0 0 0 1 0 0 1 0
0 0 1 1 0 0 0 0 1 1 0
0 1 0 0 1 0 0 1 1 0 0
0 1 0 1 0 1 0 0 1 0 0
0 1 1 0 0 1 0 0 0 0 0
0 1 1 1 0 0 0 1 1 1 1
1 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 1 0 0
1 0 1 0 1 1 1 1 1 1 1
1 0 1 1 1 1 1 1 1 1 1
1 1 0 0 1 1 1 1 1 1 1
1 1 0 1 1 1 1 1 1 1 1
1 1 1 0 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
ENTITY sevensegment IS
 PORT (a : IN STD_LOGIC_VECTOR (3 DOWNTO 0);
 s :OUT STD_LOGIC_VECTOR(0 TO 6));
END sevensegment;
ARCHITECTURE behavior OF sevensegment IS
 BEGIN
 WITH a SELECT
 s<= "0000001" WHEN "0000" ,
 "1001111" WHEN "0001" ,
 "0010010" WHEN "0010" ,
 "0000110" WHEN "0011" ,
 "1001100" WHEN "0100" ,
 "0100100" WHEN "0101" ,
 "0100000" WHEN "0110" ,
 "0001111" WHEN "0111" ,
 "0000000" WHEN "1000" ,
 "0000100" WHEN "1001" ,
 "1111111" WHEN OTHERS;
END behavior;

University of Sulaimani Advanced Electronic Lab

College of Engineering Fourth Year 2010-2011

Electrical Engineering Department Prepared by: Mr. Araz S. Ameen

29

Port Name

Procedure:
1. Create a new Quartus II project for the BCD to seven segment decoder circuit. Select

Cyclone II EP2C35F672C6 as the target chip, which is the FPGA chip on the Altera DE2
board.

2. Create a VHDL entity for the code in Figure 3 and include it in your project.
3. Compile the project.
4. Make the following pin assignments for the DE2 board, and recompile the project.

FPGA Pin No. Description on DE2 Board
a(0) Toggle Switch[0]
a(1) Toggle Switch[1]
a(2) Toggle Switch[2]
a(3) Toggle Switch[3]
s(0) Seven Segment Digit 0[0]
s(1) Seven Segment Digit 0[1]
s(2) Seven Segment Digit 0[2]
s(3) Seven Segment Digit 0[3]
s(4) Seven Segment Digit 0[4]
s(5) Seven Segment Digit 0[5]
s(6) Seven Segment Digit 0[6]

5. Download the compiled circuit into the FPGA chip. Test the functionality of the circuit by
toggling the switches and observing the seven segment display.

1. Derive the logic expressions for the seven segment display outputs and complete the
VHDL code of figure 2. Which code style you prefer (figure 2 or figure 3), why?

Discussion:

2. Write a VHDL code for a circuit that coverts gray code to BCD code using two the styles of
figure 2 and figure 3.

University of Sulaimani Advanced Electronic Lab

College of Engineering Fourth Year 2010-2011

Electrical Engineering Department Prepared by: Mr. Araz S. Ameen

30

Experiment Number 4
N-Bit Binary Adder

Apparatus: PC and DE2 Board

Task: Learning the following: 1. COMPONENT declaration and instantiation.
 2. FOR GENERATE statement.
 3. Defining an ENTITY with GENERIC

1- Named Association:

Theory:

1. COMPONENT Declaration and Instantiation:

A VHDL code defined in one source code file can be used as a subcircuit in another source
code file. In VHDL jargon the subcircuit is called a component. A subcircuit must be declared
using a component declaration. This statement specifies the name of the subcircuit and gives
the names of its input and output ports. The component declaration can appear either in the
declaration region of an architecture or in package declaration.

General form: COMPONENT component_name
 GENERIC (parameter_name: integer: = default value ;
 parameter_name: Integer: = default value);

 PORT (signal_name, signal_name, … : mode type_name;
 signal_name, signal_name, … : mode type_name);

 END COMPONENT;

Once a component declaration is given, the component can be instantiated as a subcircuit.
This done using component instantiation statement.

General form:

 Instance_name : component name
 PORT MAP (formal_name=> actual_name, formal_name=> actual_name ,) ;

2- Positional Association:
Instance_name : component name

 PORT MAP (actual_name, actual_name ,) ;

Each formal name is the name of a port in the subcircuit. Each actual name is the name of a
signal in the code that instantiate the subcircuit. The signal names following PORT MAP keyword
can be written in two ways:

University of Sulaimani Advanced Electronic Lab

College of Engineering Fourth Year 2010-2011

Electrical Engineering Department Prepared by: Mr. Araz S. Ameen

31

• IN name association, the order of the signal listed after PORT MAP keyword does not
have to be the same as the order of the ports in the corresponding COMPONENT
declaration.

• IN positional association, the signal names following the PORT MAP keyword are given in
the same order as in the COMPONENT declaration, and then the formal name is not
needed.

The VHDL code of figure1 represents the design entity for 4-bit adder which uses the VHDL

code of full adder in experiment number2 as a component.

Figure 1: VHDL code for a four bit adder, using component instantiation

2. FOR –GENERATE statement:
 The FOR-GENERATE statement provides a convenient way of repeating either a logic
expression or a component instantiation. The code of figure2 illustrates its use for component
instantiation. The code in the figure is equivalent to the code given in figure1.

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
ENTITY adder IS
 PORT (cin : IN STD_LOGIC;
 x, y : IN STD_LOGIC_VECTOR(3 DOWNTO 0) ;
 s : OUT STD_LOGIC_VECTOR(3 DOWNTO 0) ;
 cout : OUT STD_LOGIC) ;
END adder;
ARCHITECTURE behavior OF adder IS
 SIGNAL c : STD_LOGIC_VECTOR(1 TO 3) ;
 COMPONENT fulladder
 PORT (cin, x, y : IN STD_LOGIC;
 s, cout : OUT STD_LOGIC) ;
 END COMPONENT;
BEGIN
 stage0: fulladder PORT MAP (cin , x(0), y(0), s(0), c(1)) ;
 stage1: fulladder PORT MAP (c(1), x(1), y(1), s(1), c(2)) ;
 stage2: fulladder PORT MAP (c(2), x(2), y(2), s(2), c(3)) ;
 stage3: fulladder PORT MAP (c(3), x(3), y(3), s(3), cout) ;
END behavior;

University of Sulaimani Advanced Electronic Lab

College of Engineering Fourth Year 2010-2011

Electrical Engineering Department Prepared by: Mr. Araz S. Ameen

32

General form: generate_label :
 FOR index_variable IN range GENERATE
 statement ;
 statement ;
 END GENERATE;

3. Defining an ENTITY with GENERICs:
The code in figure2 represent 4-bit binary adder. It is possible to make this code more general

by introducing a parameter in the code that represents the number of bits in the adder. In VHDL
jargon such parameter is called a GENERIC. Figure3 gives the code for an n-bit adder entity
named addern. The GENERIC keyword is used to define the number of bits, n, to be added. This
parameter is used in the code, both in the definitions of the signals X, Y, and S and in the FOR-
GENERATE statement that instantiate the n full adders.

Figure2: VHDL code for 4-bit adder using FOR-GENERATE statement

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
ENTITY adder IS
 PORT (cin : IN STD_LOGIC;
 x, y : IN STD_LOGIC_VECTOR (3 DOWNTO 0);
 s : OUT STD_LOGIC_VECTOR (3 DOWNTO 0);
 cout : OUT STD_LOGIC);
END adder;
ARCHITECTURE behavior OF adder IS
 SIGNAL C: STD_LOGIC_VECTOR (0 TO 4);
 COMPONENT fulladder
 PORT (cin, x, y : IN STD_LOGIC;
 s, cout : OUT STD_LOGIC);
 END COMPONENT;
 BEGIN
 c(0) <= cin ;
 Generate_label:
 FOR i IN 0 TO 3 GENERATE
 bit: fulladd PORT MAP (c(i), x(i), y(i), s(i), c(i+1)) ;
 END GENERATE;
 cout <= c(4) ;
END behavior ;

University of Sulaimani Advanced Electronic Lab

College of Engineering Fourth Year 2010-2011

Electrical Engineering Department Prepared by: Mr. Araz S. Ameen

33

Figure 3: VHDL code for n-bit adder

Procedure:

1. Create a new Quartus II project for the n-bit binary adder. Select Cyclone II EP2C35F672C6
as the target chip, which is the FPGA chip on the Altera DE2 board.

2. Create a VHDL entity for the code in Figure 3 and include it in your project.
3. Compile the project.
4. Make the following pin assignments for the DE2 board, and recompile the project.

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;
ENTITY adder IS
 GENERIC (n : INTEGER : = 4) ;
 PORT (Cin : IN STD_LOGIC ;
 X, Y : IN STD_LOGIC_VECTOR(n-1 DOWNTO 0) ;
 S : OUT STD_LOGIC_VECTOR(n-1 DOWNTO 0) ;
 Cout : OUT STD_LOGIC) ;
END adder ;
ARCHITECTURE behavior OF adder IS
 SIGNAL C : STD_LOGIC_VECTOR(0 TO n) ;
 COMPONENT fulladd
 PORT (Cin, x, y : IN STD_LOGIC ;
 s, Cout : OUT STD_LOGIC) ;
 END COMPONENT ;
 BEGIN
 C(0) <= Cin ;
 Generate_label:
 FOR i IN 0 TO 3 GENERATE
 bit: fulladd PORT MAP (C(i), X(i), Y(i), S(i), C(i+1)) ;
 END GENERATE ;
 Cout <= C(n) ;
END behavior ;

University of Sulaimani Advanced Electronic Lab

College of Engineering Fourth Year 2010-2011

Electrical Engineering Department Prepared by: Mr. Araz S. Ameen

34

Port Name FPGA Pin No. Description on DE2 Board
X(0) Toggle Switch[0]
X(1) Toggle Switch[1]
X(2) Toggle Switch[2]
X(3) Toggle Switch[3]
Y(0) Toggle Switch[4]
Y(1) Toggle Switch[5]
Y(2) Toggle Switch[6]
Y(3) Toggle Switch[7]
Cin Toggle Switch[8]
S(0) LED Red [0]
S(1) LED Red [1]
S(2) LED Red [2]
S(3) LED Red [3]
Cout LED Red [4]

5. Download the compiled circuit into the FPGA chip. Test the functionality of the circuit for

the following values of Cin, X, Y

Cin X Y Result
0 0 0
0 4 5
0 6 2
0 10 8
0 11 9
1 12 10
1 8 15
1 5 3
1 7 8
1 15 15

1. Rewrite the code of figure1 using name association.

Discussion:

2. Write a VHDL code for a 4-bit binary adder using only simple assignment statement
(note: do not use component).

University of Sulaimani Advanced Electronic Lab

College of Engineering Fourth Year 2010-2011

Electrical Engineering Department Prepared by: Mr. Araz S. Ameen

35

Experiment Number 5
BCD Adder

Apparatus: PC and DE2 Board

Task: Learning the use of DE2 Pin assignment file to simplify pin assignment step.

F.A0

A0B0

Cin
F.A1

A1B1

C1

Z1

F.A2

A2B2

C2

Z2

F.A3

A3B3

C3

Z3

C4

F.A4F.A5
C5 ‘0’

C6

S0S1S2S3K

BCD Digit D0BCD Digit D1

Theory:
A BCD adder is a logic circuit that adds two BCD digits(A and B) and produces two digit BCD

sum (K S). The addition of two BCD numbers, together with a possible carry from a previous
stage, using a 4- bit binary adder will produce a binary result in the range (0 to 19). To obtain the
results that exceeds 9, correction logic circuit is required to add (0110) to the binary results if
the results is greater than (1001), and nothing is added when the binary result is less than or
equal to (1001). Figure1 shows the circuit diagram of the BCD adder.

Figure 1: Circuit diagram of BCD adder.

University of Sulaimani Advanced Electronic Lab

College of Engineering Fourth Year 2010-2011

Electrical Engineering Department Prepared by: Mr. Araz S. Ameen

36

DE2 Pin Assignment File:
A useful Quartus II feature allows the user to both export and import the pin assignments

from a special file format, rather than creating them manually using the Assignment Editor. A
simple file format that can be used for this purpose is the comma separated value (CSV) format,
which is a common text file format that contains comma-delimited values.

A good way to make the required pin assignments is to import into the Quartus II software
the file called "DE2_ pin_ assignments. csv " , which is provided with the DE2 board and
available on your experiments folder.

It is important to realize that the pin assignments in the" DE2_ pin_ assignments.csv "file are
useful only if the pin names given in the file are exactly the same as the port names used in your
VHDL entity.

1. Using full adder as a sub-circuit.

Design Example:
The design example for this experiment is building the BCD adder shown in figure1 with the

following requirements:

2. Using seven segment display as a sub-circuit to display the decimal value of the BCD
inputs (A and B) and BCD outputs (D1 and D0).

BCD ADDER

SW(0)SW(1)SW(2)SW(3)SW(4)SW(5)SW(6)SW(7)

SW(8)
Cin

A0A1A2A3B0B1B2B3

S0S1S2S3K

‘0’

HEX0(0)
HEX0(1)
HEX0(2)
HEX0(3)
HEX0(4)
HEX0(5)
HEX0(6)

A0
A1
A2
A3

BCD
to

Seven
Segment
Decoder

S0
S1
S2
S3
S4
S5
S6

A0
A1
A2
A3

BCD
to

Seven
Segment
Decoder

S0
S1
S2
S3
S4
S5
S6

A0
A1
A2
A3

BCD
to

Seven
Segment
Decoder

S0
S1
S2
S3
S4
S5
S6

A0
A1
A2
A3

BCD
to

Seven
Segment
Decoder

S0
S1
S2
S3
S4
S5
S6

HEX1(0)
HEX1(1)
HEX1(2)
HEX1(3)
HEX1(4)
HEX1(5)
HEX1(6)

HEX2(0)
HEX2(1)
HEX2(2)
HEX2(3)
HEX2(4)
HEX2(5)
HEX2(6)

HEX3(0)
HEX3(1)
HEX3(2)
HEX3(3)
HEX3(4)
HEX3(5)
HEX3(6)

HEX0

HEX2

HEX1

HEX3

DADB

D0D1

Figure 2: Block diagram for the design example.

The VHDL code for the above requirement needs the following ports in the entity:
1- Input ports: 9 Toggle Switches (four switches for BCD input A, four switches for BCD input

B, and one switch for Cin).
2- Output ports: Four Seven Segment Displays, with each seven segment has seven ports,

the total ports will be (28 ports).
During Pin Assignments step, we must make assignments for 37 port(9 + 28) which is tedious
work for doing it manually therefore we will use the " DE2_ pin_ assignments.csv " file.

University of Sulaimani Advanced Electronic Lab

College of Engineering Fourth Year 2010-2011

Electrical Engineering Department Prepared by: Mr. Araz S. Ameen

37

To use the " DE2_ pin_ assignments.csv " file, we must use the names of the DE2 board in the
VHDL code for the circuit, as shown in figure2. The VHDL code for the circuit of figure2 is shown
in figure4.

Figure3: Import Assignment Window

5. Download the compiled circuit into the FPGA chip. Test the functionality of the circuit for
the following values of Cin, A, B

Procedure:
1. Create a new Quartus II project for the BCD adder. Select Cyclone II EP2C35F672C6 as the

target chip, which is the FPGA chip on the Altera DE2 board.
2. Create a VHDL entity for the code in Figure 4 and include it in your project.
3. Compile the project.
4. Import "DE2_ pin_ assignments.csv" file by choosing Assignments > Import Assignments.

This opens the dialogue in figure 3 to select the file to import. Browse to the folder that
holds your experiments and press OK.

Cin X Y Result
0 0 0
0 4 5
0 6 4
0 9 8
0 2 9
1 0 0
1 1 4
1 5 3
1 7 8
1 9 9

1. Describe the function of line1, and line2 of the VHDL code of figure 3.
Discussion:

2. Write a VHDL code for BCD adder of figure 1 using Conditional Assignment Statement.

University of Sulaimani Advanced Electronic Lab

College of Engineering Fourth Year 2010-2011

Electrical Engineering Department Prepared by: Mr. Araz S. Ameen

38

Figure 4: VHDL code for figure 2.

LIBRARY ieee;
USE ieee.std_logic_1164.all;
--
ENTITY bcdadder IS
PORT(SW :IN STD_LOGIC_VECTOR(8 DOWNTO 0);
 HEX0,HEX1,HEX2,HEX3 :OUT STD_LOGIC_VECTOR(0 TO 6));
END bcdadder;
--
ARCHITECTURE behavior OF bcdadder IS
 SIGNAL C :STD_LOGIC_VECTOR(1 TO 6);
 SIGNAL Z :STD_LOGIC_VECTOR(1 TO 3);
 SIGNAL S,S1 :STD_LOGIC_VECTOR(3 DOWNTO 0);
 SIGNAL K,L :STD_LOGIC;

 COMPONENT fulladder
 PORT(Cin,x,y :IN STD_LOGIC;
 s,Cout :OUT STD_LOGIC);
 END COMPONENT;

 COMPONENT sevensegment
 PORT(A :IN STD_LOGIC_VECTOR(3 DOWNTO O);
 S :OUT STD_LOGIC_VECTOR(0 TO 6));
 END COMPONENT;

 BEGIN
 ---------------------bcd adder part-----------------------
 L<='0'; --line1
 FA0:fulladder PORT MAP(SW(8),SW(0),SW(4),S(0),C(1));
 FA1:fulladder PORT MAP(C(1) ,SW(1),SW(5),Z(1),C(2));
 FA2:fulladder PORT MAP(C(2) ,SW(2),SW(6),Z(2),C(3));
 FA3:fulladder PORT MAP(C(3) ,SW(3),SW(7),Z(3),C(4));
 FA4:fulladder PORT MAP(L,Z(1),K,S(1),C(5));
 FA5:fulladder PORT MAP(C(5),Z(2),K ,S(2),C(6));
 S(3)<=Z(3) XOR C(6);
 K<= C(4) OR (Z(3) AND Z(2)) OR (Z(3) AND Z(1));
 ----------------------seven segment------------------------
 S1<="000" & K; --line2
 DA:sevensegment PORT MAP(SW(3 DOWNTO 0),HEX0);
 DB:sevensegment PORT MAP(SW(7 DOWNTO 4),HEX1);
 D0:sevensegment PORT MAP(S ,HEX2);
 D1:sevensegment PORT MAP(S1,HEX3);
 --
 END behavior;

University of Sulaimani Advanced Electronic Lab

College of Engineering Fourth Year 2010-2011

Electrical Engineering Department Prepared by: Mr. Araz S. Ameen

39

signal name <= expression WHEN logic expression ELSE ;
 expression WHEN logic expression ELSE ;
 .
 .
 expression ;

Experiment Number 6
Two Digit BCD Adders

Apparatus: PC and DE2 Board

Task: Learning: 1. Using unsigned package for addition and subtraction
 2. Using Conditional Assignment Statements for circuit design.

BCD Adder
A0

K
A1A2A3

Cin

B0B1B2B3

S0S1S2S3

A00A01A02A03B00B01B02B03

S00S01S02S03

A0B0

S0

BCD Adder
A0

K
A1A2A3

Cin

B0B1B2B3

S0S1S2S3

A10A11A12A13B10B11B12B13

S10S11S12S13

A1B1

S1
S20

S2

Theory:
 Two digit BCD adders is a logic circuit that consist of two BCD adders, it is used to add two 2-

digit BCD numbers, A1 A0 and B1 B0 to produce the three digit BCD sum S2 S1 S0, where each
BCD digit is a 4-bit number. The block diagram of two digit BCD adder is shown in figure1.

Figure 1: Block diagram of two digit BCD adder.

Unsigned Package:
STD_LOGIC_VECTOR signals can be used as binary numbers in arithmetic circuits by including

in the code the following statement for unsigned arithmetic:
USE ieee.std_logic_unsigned.all

The std_logic_unsigned package specifies that it is legal to use the STD_LOGIC_VECTOR signal
with arithmetic operators, like (+, -). The VHDL compiler should generate a circuit that works for
unsigned numbers.

The conditional signal assignment is used to set a signal to one of several alternative values,
the general form is:

As an example, the following conditional assignment statement describes an EX-NOR gate:
f<='1'WHEN x1=x2 ELSE '0' ;

Conditional Assignment Statement:

University of Sulaimani Advanced Electronic Lab

College of Engineering Fourth Year 2010-2011

Electrical Engineering Department Prepared by: Mr. Araz S. Ameen

40

Design Example:
In experiment number 5, a VHDL code for a BCD adder is created by using two full adder

component and simple assignment statement. The two digit BCD adder can be created using
two instances of the BCD adder of experiment 5 in the way shown in figure1. A different
approach for describing the two-digit BCD adder in VHDL code is to specify an algorithm like the
one represented by the following pseudo-code:

It is reasonably straightforward to see what circuit could be used to implement this pseudo-
code. Lines 1, 9, 10, and 18 represent adders, lines 2-8 and 11-17 correspond to multiplexers,
and testing for the conditions T 0 > 9 and T1 > 9 requires comparators. A VHDL code that
corresponds to this pseudo-code is shown in figure2 using conditional assignment statement.

Cin

Procedure:
1. Create a new Quartus II project for the two digit BCD adder. Select Cyclone II EP2C35F672C6

as the target chip, which is the FPGA chip on the Altera DE2 board. Use the SW3-0 as A0 digit,
SW7-4 as A1 digit, SW11-8 as B0 digit, SW15-12 as B1 digit.

2. Create a VHDL entity for the code in figure 2 and include it in your project.
3. Compile the project.
4. Import "DE2_ pin_ assignments.csv" file .
5. Download the compiled circuit into the FPGA chip. Test the functionality of the circuit by

trying the following values for the numbers (A1 A0) and (B1 B0).

A1 A0 B1 B0 S2 S1 S0
0 00 00
0 40 05
0 62 47
0 92 38
0 99 99
1 00 00
1 40 05
1 62 47
1 92 38
1 99 99

1. T0 = A0 + B0 11. If (T1 > 9) then
2. If (T0 > 9) then 12. Z1 = 10;
3. Z0 = 10; 13. C2 = 1;
4. C1 = 1; 14. Else
5. Else 15. Z1 = 0;
6. Z0 = 0; 16. C2 = 0;
7. C1 = 0; 17. End if
8. End if 18. S1 = T1 − Z1
9. S0 = T0 − Z0 19. S2 = C2
10. T1 = A1 + B1 + C1

University of Sulaimani Advanced Electronic Lab

College of Engineering Fourth Year 2010-2011

Electrical Engineering Department Prepared by: Mr. Araz S. Ameen

41

Figure2: VHDL code for two digit BCD adder

1. Write a VHDL code for two digit BCD adder using the BCD adder as a component.
Discussion:

2. Describe briefly the task of each line in the architecture of figure 2.

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_unsigned.all;
ENTITY bcd2digit IS
 PORT(SW :IN STD_LOGIC_VECTOR(15 DOWNTO 0);
 HEX0, HEX1, HEX2 :OUT STD_LOGIC_VECTOR (0 TO 6);
 HEX4,HEX5,HEX6,HEX7 :OUT STD_LOGIC_VECTOR(0 TO 6));
END bcd2digit;
ARCHITECTURE behavior OF bcd2digit IS
 SIGNAL Z0,Z1,S2 :STD_LOGIC_VECTOR(3 DOWNTO 0);
 SIGNAL T0,T1,S0,S1 :STD_LOGIC_VECTOR(4 DOWNTO 0);
 SIGNAL c1,c2 :STD_LOGIC;
------------------------seven segment component------------------------------------
 COMPONENT sevensegment
 PORT(A :IN STD_LOGIC_VECTOR(3 DOWNTO 0);
 S :OUT STD_LOGIC_VECTOR(0 TO 6));
 END COMPONENT;

 BEGIN
 T0<=('0' & SW(3 DOWNTO 0))+SW(11 DOWNTO 8); --T0=A0+B0
 Z0<="1010" WHEN T0>"1001" ELSE "0000";
 c1<='1' WHEN T0>"1001" ELSE '0';
 S0<=T0 - Z0;
 T1<=('0' & SW(7 DOWNTO 4))+SW(15 DOWNTO 12)+c1;--T1=A1+B1+C1
 Z1<="1010" WHEN T1>"1001" ELSE "0000";
 c2<='1' WHEN T1>"1001" ELSE '0';
 S1<=T1 - Z1;
 S2<="000" & c2;
--------------------------------seven segment--------------------------------------
 D0:sevensegment PORT MAP(S0(3 DOWNTO 0),HEX0);
 D1:sevensegment PORT MAP(S1(3 DOWNTO 0),HEX1);
 D2:sevensegment PORT MAP(S2(3 DOWNTO 0),HEX2);
 D4:sevensegment PORT MAP(SW(3 DOWNTO 0),HEX4);
 D5:sevensegment PORT MAP(SW(7 DOWNTO 4),HEX5);
 D6:sevensegment PORT MAP(SW(11 DOWNTO 8),HEX6);
 D7:sevensegment PORT MAP(SW(15 DOWNTO 12),HEX7);
END behavior;

University of Sulaimani Advanced Electronic Lab

College of Engineering Fourth Year 2010-2011

Electrical Engineering Department Prepared by: Mr. Araz S. Ameen

42

Experiment number 7
Latches and Flip Flops

Apparatus: PC and DE2 Board
Task: Learning: 1. Using Sequential Assignment Statement
 2. Simulate the design using vector waveform file.
Theory

D

clk

s

r

Q

Qd

:
Latches and flip-flops are storage elements consist of logic gates and feedback connection

between inputs and outputs. Figure1 shows a gated D-latch circuit, a VHDL code for the D-latch
can be written using simple assignment statement (as shown in figure2).

Figure1: Gated D-latch logic diagram

Figure2: VHDL code for Gated D-latch using simple assignment statement

 Altera FPGAs include flip-flops and latches that are available for implementing a user’s
circuit. These flip-flops and latches can be inferred using PROCESS statement.

Since the order in which the sequential statements appear in VHDL code is significant,
whereas the ordering of concurrent statement is not, the sequential statements must be
separated from the concurrent statements. This is accomplished using a PROCESS statement.

PROCESS Statement:

library ieee;
use ieee.std_logic_1164.all;
entity dlatch is
 port (D, clk : in std_logic ;
 Q,Qd : buffer std_logic) ;
end dlatch;
architecture behavior of dlatch is
 signal s,r : std_logic ;
 begin
 s<= D nand clk ;
 r<= (not D) nand clk ;
 Q<= s nand Qd ;
 Qd<= r nand Q ;
end behavior ;

University of Sulaimani Advanced Electronic Lab

College of Engineering Fourth Year 2010-2011

Electrical Engineering Department Prepared by: Mr. Araz S. Ameen

43

The PROCESS statement appears inside an architecture body, and it encloses other statements
within it. The general form of a PROCESS statement is shown in figure3.

General form: PROCESS (signal_name, signal_name, ….)
 [VARIABLE declarations]
 BEGIN
 [Simple Signal Assignment Statement]
 [Variable Assignment Statement]
 [WAIT Statement]
 [CASE Statement]
 [IF Statement]
 [LOOP Statement]
 END PROCESS;

The VHDL code for the gated D-latch (figure2) can be rewritten using PROCESS statement as
shown in figure3.

Figure3: VHDL code for Gated D latch using PROCESS statement

The VHDL code of figure3 can be converted to code for positive edged triggered D flip-flop by

making some modification in the PROCESS body as follows:

LIBRARY ieee;
USE ieee.std_logic_1164.all;
ENTITY dlatch IS
 PORT(D,clk :IN STD_LOGIC;
 Q, Qd :BUFFER STD_LOGIC);
END dlatch;
ARCHITECTURE behavior OF dlatch IS
 BEGIN
 PROCESS(D,clk)
 BEGIN
 IF clk='1' THEN
 Q<=D;
 END IF;
 END PROCESS;
 Qd<= NOT Q;
END behavior;

PROCESS(clk)
 BEGIN
 IF clk'EVENT AND clk='1' THEN Q<=D;
 END IF;
END PROCESS;

University of Sulaimani Advanced Electronic Lab

College of Engineering Fourth Year 2010-2011

Electrical Engineering Department Prepared by: Mr. Araz S. Ameen

44

D C

C

D

clock
reset

clr

D B

Bclr

D A

Aclr
clk

Design Example:
Figure4 shows a circuit with three different storage elements: a gated D latch, a positive-edge

triggered D flip-flop, and a negative-edge triggered D flip-flop. The circuit have three inputs (D,
clock, and reset), and six outputs (A, Ad, B, Bd, C, and Cd) .The VHDL code for this circuit is
shown in figure5.

Figure4: Three different storage elements

Figure5: VHDL code for Figure4.

LIBRARY ieee;
USE ieee.std_logic_1164.all;
ENTITY exp7 IS
 PORT(D,clock,reset :IN STD_LOGIC;
 A,Ad :OUT STD_LOGIC;
 B,Bd :OUT STD_LOGIC;
 C,Cd :OUT STD_LOGIC);
END exp7;
ARCHITECTURE behavior OF exp7 IS
 SIGNAL y1,y2,y3 :STD_LOGIC;
 BEGIN
 PROCESS(D,clock,reset)
 BEGIN
 IF reset='0' THEN
 y1<='0';
 y2<='0';
 y3<='0';
 ELSE
 IF clock='1' THEN y1<=D;
 END IF;
 IF clock'EVENT AND clock='1' THEN y2<=D;
 END IF;
 IF clock'EVENT AND clock='0' THEN y3<=D;
 END IF;
 END IF;
 END PROCESS;
 A <=y1;
 Ad<=NOT y1;
 B <=y2;
 Bd<=NOT y2;
 C <=y3;
 Cd<=NOT y3;
END behavior;

University of Sulaimani Advanced Electronic Lab

College of Engineering Fourth Year 2010-2011

Electrical Engineering Department Prepared by: Mr. Araz S. Ameen

45

1. Create a new Quartus II project for the circuit of figure4. Select Cyclone II EP2C35F672C6
as the target chip, which is the FPGA chip on the Altera DE2 board.

Procedure:

2. Create a VHDL entity for the code in figure 5 and include it in your project.
3. Compile the project.
4. Create a vector waveform file for the circuit (from file menu, select New → Vector

Waveform File).
5. In vector waveform file window, select Edit → End Time → 12 μsec.
6. In vector waveform file window, select Edit → Grid Size → 1 μsec.
7. Insert D, clock, A, B, C signal into the vector waveform file and simulate the design for the

following value for D, clock shown below(complete the timing diagram from simulation
result)

clock

D

A

B

C

reset

1. Write a VHDL code for JK latch.
Discussion:

2. Write a VHDL code for JK flip-flop.

University of Sulaimani Advanced Electronic Lab

College of Engineering Fourth Year 2010-2011

Electrical Engineering Department Prepared by: Mr. Araz S. Ameen

46

Experiment number 8
Shift Register

Apparatus: PC and DE2 Board
Task: Using Sequential Assignment Statement to describe Shift Register.
Theory

D Q

Q

D Q

Q

D Q

Q

D Q

Q

x Q4Q3Q2Q1

clk

:
A flip-flop stores one bit of information. When a set of n flip-flops is used to store n bits of

information, such as n-bit number, we refer to these flip-flops as a register. A common clock is
used for each flip-flop in a register. A register that provides the ability to shift its contents is
called shift register. Figure1 shows a four bit shift register that is used to shift its contents one
bit position to the right.

Figure1: Simple 4-bit shifts register

The data bits are loaded into the shift register in a serial fashion using the (x) input. The
contents of each flip-flop are transferred to the next flip-flop at each positive edge of the clock.
The timing diagram of the transfer is given in figure2, which shows what happens when the
signal values at (x) during eight consecutive clock cycles are (1, 0, 1, 1, 1, 0, 0, 0), assuming that
the initial state of all flip-flops is 0.

clock

t0 t1 t2 t3 t4 t5 t6 t7

x

Q1

Q2

Q3

Q4

Figure2: Timing diagram for figure1.

University of Sulaimani Advanced Electronic Lab

College of Engineering Fourth Year 2010-2011

Electrical Engineering Department Prepared by: Mr. Araz S. Ameen

47

Figure3 shows a VHDL code that defines the 4-bit shift register of figure1. The initial state of
the flip-flops is set to 0 by using a reset input. The shift register has a serial input, x, and parallel
output, Q. The left-most bit in the register is Q (1), and the right-most bit is Q (4); shifting is
performed in the left-to-right direction.

Figure3: VHDL code for 4-bit shift register.

1. Create a new Quartus II project for the 4-bit shift register. Select Cyclone II EP2C35F672C6
as the target chip, which is the FPGA chip on the Altera DE2 board.

Procedure:

2. Create a VHDL entity for the code in figure 3 and include it in your project.
3. Compile the project.
4. Perform the following pin assignment.

Port Name FPGA Pin No. Description on DE2 Board
x Toggle Switch[0]
rst Toggle Switch[1]
clk Push button[0]
Q(1) LED Red[1]
Q(2) LED Red[2]
Q(3) LED Red[3]
Q(4) LED Red[4]

5. Download the compiled circuit into the FPGA chip. Test the functionality of the circuit by
completing the timing diagram shown below. Note that pressing and releasing the push
button switch represent one clock cycle.

library ieee;
use ieee.std_logic_1164.all;
entity shift4 is
 port(x, clk, rst :in std_logic;
 Q :buffer std_logic_vector(1 to 4));
end shift4;
architecture behavior of shift4 is
 begin
 process(clk,rst)
 begin
 if rst='0' then Q<="0000";
 elsif clk'event and clk='1' then
 Q(1)<=x;
 Q(2)<=Q(1);
 Q(3)<=Q(2);
 Q(4)<=Q(3);
 end if;
 end process;
end behavior;

University of Sulaimani Advanced Electronic Lab

College of Engineering Fourth Year 2010-2011

Electrical Engineering Department Prepared by: Mr. Araz S. Ameen

48

clock

t0 t1 t2 t3 t4 t5 t6 t7

x

Q1

Q2

Q3

Q4

rst

1. Show by block diagrams the types of registers.
Discussion:

2. Write a VHDL code for each type of register.

University of Sulaimani Advanced Electronic Lab

College of Engineering Fourth Year 2010-2011

Electrical Engineering Department Prepared by: Mr. Araz S. Ameen

49

Experiment number 9
Synchronous Counters

Apparatus: PC and DE2 Board
Task: Using Sequential Assignment Statement and arithmetic package to describe Counters.
Theory

T Q

Q

T Q

Q

T Q

Q

T Q

Q

‘1’ Q3Q2Q1Q0

clk

:
The term synchronous refers to events that have a fixed time relationship with each other. A

synchronous counter is one in which all the flip-flops in the counter are clocked at the same
time by a common clock pulse. Figure1 shows a 4-bit synchronous binary counter using T-type
flip-flop. The LSB T flip-flop must operate in toggle state.

Figure1: 4-bit synchronous binary counter using T flip-flop.

A VHDL code for figure1 can be written using four instances of T flip-flop and simple
assignment statement. Figure2 shows a VHDL code for the 4-bit synchronous binary counter
using process statement and unsigned arithmetic package.

Figure2: VHDL code of 4-bit counter using process.

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
entity count4 is
 port(clk, rst :in std_logic;
 Q :out std_logic_vector(3 DOWNTO));
end count4;
architecture behavior of count4 is
 signal count : std_logic_vector(3 DOWNTO);
 begin
 process(rst,clk)
 begin
 if rst='0' then count<="0000";
 elsif clk'event and clk='1' then count<= count+1;
 end if;
 end process;
 Q<=count;
END behavior;

University of Sulaimani Advanced Electronic Lab

College of Engineering Fourth Year 2010-2011

Electrical Engineering Department Prepared by: Mr. Araz S. Ameen

50

1. Create a new Quartus II project for the 4-bit counter. Select Cyclone II EP2C35F672C6 as
the target chip, which is the FPGA chip on the Altera DE2 board.

Procedure:

2. Create a VHDL entity for the code in figure 2 and include it in your project.
3. Compile the project.
4. Perform the following pin assignment.

Port Name FPGA Pin No. Description on DE2 Board
rst Toggle Switch[0]
clk Push button[0]
Q(0) LED Red[0]
Q(1) LED Red[1]
Q(2) LED Red[2]
Q(3) LED Red[3]

5. Download the compiled circuit into the FPGA chip and test the functionality of the circuit.

Note that pressing and releasing the push button switch represent one clock cycle.

1. Write a VHDL code for the circuit of figure1.
Discussion:

2. Modify the code of figure2 to operate in down mode

