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Code Reflection and Information



• Reflection inspects type metadata at runtime

• The type metadata contains information such as:
– The type Name

– The containing Assembly

– Constructors

– Properties

– Methods

– Attributes

• This data can be used to create instances, access values and 
execute methods dynamically at runtime

What is Reflection?



• Two methods:
– Statically at compile time

– Dynamically at runtime

How do I get Type data?



• There are two ways to dynamically 

instantiate a type:
– Activator.CreateInstance

– Calling Invoke on a ConstructorInfo object 

(advanced scenarios)

How can I create an instance of a Type?



Accessing a Property



Invoking a Method



Reflection (004)
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Working with Garbage Collection



• Garbage collection is automatic memory management.

• De-referenced objects (orphans) are not collected immediately 

but periodically.
– Many factors influence Garbage Collection frequency

– Not all orphans are collected at the same time

• Garbage Collection is computationally expensive

What is Garbage Collection?



• In most cases, let the Garbage Collector 

do its thing.

• For a periodic activity it may make 

sense to force the collector to run:
– Windows Service

Forcing Garbage Collection



• If an object consumes many resources when instantiated.

• If you want to proactively free expensive resources
– You don’t want to force a full collection cycle.

• Force Garbage Collection?
– Implement IDisposable. 

But I want to help!



• Some objects need explicit code to 

release resources.

• The IDisposable interface marks that 

these types implement the Dispose 

method.

• The simple dispose pattern works well 

for simple scenarios and sealed types
– use the advanced pattern in most cases.

Disposable Objects



• Use for any non-trivial disposable 

object.

Advanced Dispose Pattern



• The using keyword provides a useful 

shortcut for invoking Dispose on types 

that implement IDisposable.

“Using” a shortcut…



• Close
– May be functionally the same as Dispose

– May be a subset of the Dispose functionality

• A closed object may be reopened
– IDbConnection

• Stop is similar to Close 
– May be restarted.

– Timer, etc.

Dispose versus Close versus Stop



Streams and Dispose (005)



• Despite having automatic memory management, it is still 

possible to create managed memory leaks.

• Objects that fall out of scope may be referenced by objects in 

scope, keeping them alive.

• Events can be a common source of memory leaks:
– Events can hold references to objects

– Solution! Unsubscribe from events proactively

• Weak references can be used to avoid some memory leak 

scenarios.

Memory Leaks



• Weak references create a reference that the Garbage Collector 

ignores.

• The Garbage Collector will assume an object is eligible for 

collection if it is only referred to by weak references.

• To hold an object with only weak references, create a local 

variable referring to the weak reference value. 
– This prevents collection until the local variable is out of scope.

Weak References



Memory Leaks (036)
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Module Recap
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