
04 | Features of C#, Part 3

Jerry Nixon | Microsoft Developer Evangelist

Daren May | President & Co-founder, Crank211



• Code Reflection and Information

• Working with Garbage Collection

Module Overview



Microsoft 

Virtual 

Academy

Code Reflection and Information



• Reflection inspects type metadata at runtime

• The type metadata contains information such as:
– The type Name

– The containing Assembly

– Constructors

– Properties

– Methods

– Attributes

• This data can be used to create instances, access values and 
execute methods dynamically at runtime

What is Reflection?



• Two methods:
– Statically at compile time

– Dynamically at runtime

How do I get Type data?



• There are two ways to dynamically 

instantiate a type:
– Activator.CreateInstance

– Calling Invoke on a ConstructorInfo object 

(advanced scenarios)

How can I create an instance of a Type?



Accessing a Property



Invoking a Method



Reflection (004)



Microsoft 

Virtual 

Academy

Working with Garbage Collection



• Garbage collection is automatic memory management.

• De-referenced objects (orphans) are not collected immediately 

but periodically.
– Many factors influence Garbage Collection frequency

– Not all orphans are collected at the same time

• Garbage Collection is computationally expensive

What is Garbage Collection?



• In most cases, let the Garbage Collector 

do its thing.

• For a periodic activity it may make 

sense to force the collector to run:
– Windows Service

Forcing Garbage Collection



• If an object consumes many resources when instantiated.

• If you want to proactively free expensive resources
– You don’t want to force a full collection cycle.

• Force Garbage Collection?
– Implement IDisposable. 

But I want to help!



• Some objects need explicit code to 

release resources.

• The IDisposable interface marks that 

these types implement the Dispose 

method.

• The simple dispose pattern works well 

for simple scenarios and sealed types
– use the advanced pattern in most cases.

Disposable Objects



• Use for any non-trivial disposable 

object.

Advanced Dispose Pattern



• The using keyword provides a useful 

shortcut for invoking Dispose on types 

that implement IDisposable.

“Using” a shortcut…



• Close
– May be functionally the same as Dispose

– May be a subset of the Dispose functionality

• A closed object may be reopened
– IDbConnection

• Stop is similar to Close 
– May be restarted.

– Timer, etc.

Dispose versus Close versus Stop



Streams and Dispose (005)



• Despite having automatic memory management, it is still 

possible to create managed memory leaks.

• Objects that fall out of scope may be referenced by objects in 

scope, keeping them alive.

• Events can be a common source of memory leaks:
– Events can hold references to objects

– Solution! Unsubscribe from events proactively

• Weak references can be used to avoid some memory leak 

scenarios.

Memory Leaks



• Weak references create a reference that the Garbage Collector 

ignores.

• The Garbage Collector will assume an object is eligible for 

collection if it is only referred to by weak references.

• To hold an object with only weak references, create a local 

variable referring to the weak reference value. 
– This prevents collection until the local variable is out of scope.

Weak References



Memory Leaks (036)



• Code Reflection and Information

• Working with Garbage Collection

Module Recap



©2013 Microsoft Corporation. All rights reserved. Microsoft, Windows, Office, Azure, System Center, Dynamics and other product names are or may be registered trademarks and/or trademarks in 

the U.S. and/or other countries. The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because 

Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information 

provided after the date of this presentation. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.


