
03 | Features of C#, Part 2

Jerry Nixon | Microsoft Developer Evangelist

Daren May | President & Co-founder, Crank211



• Controlling Programmatic Flow

• Manipulating Types and Strings

Module Overview



Microsoft 

Virtual 

Academy

Controlling Programmatic Flow



• Many statements impact program flow:
– Selection statements

• if, else, switch

– Iteration statements

• do, for, foreach, in, while

– Jump statements

• break, continue, default, goto, return, yield

Controlling Flow



• Selection statements evaluate Boolean 

expressions and direct execution

• If statements can be nested within other 

if statements. 

Selection Statements : if



• The ternary or conditional operator can 

be used as if statement shorthand.

Selection Statements :ternary



Switch (008)



• while and do-while statements execute 

a body of code if the expression 

evaluates to true.
– while evaluates the expression before 

executing the body, so the body may 

execute 0 or more times.

– do-while evaluates the expression after the 

first execution of the body, so the body 

executes at least once

Iteration Statements: while, do-while



• for loops are similar to while loops

• for loops include clauses that execute 

before the loop begins and after every 

iteration:
– Initialization clause – typically used to 

initialize one of more loop variables

– Iteration clause – typically used to update 

the loop variable

Iteration Statements: for



• Foreach loop iterates over each element 

in an enumerable object
– Array, Collection, List<T>

Iteration Statements: foreach



• Jump statements redirect execution
– break ends a loop or exits a switch

– continue skips a loop iteration and starts the next iteration

– goto transfers execution to a position marked by a label

– return exits a method

– throw raises an exception

Jump Statements



Iteration, break and continue (010)



Microsoft 

Virtual 

Academy

Manipulating Types



• Casting allows us to work with types in a general sense – as their 

base object or as an instance of an interface implementation.

• We can explicitly attempt to cast an object to another type 
– An advantage of strong typing is that the compiler often knows when a 

cast is possible. It doesn’t always know.

– Compilation will fail if the compiler detects an invalid cast.

• But, what about scenarios that the compiler can’t detect?

Casting Types



• In this scenario, instances of Class2 and 

Class3 can be cast an instance of Class1.

• However, an instance of Class2 can 

never be cast to Class3.

• If Class2 is cast to Class1, can it then be 

cast to Class3?

Casting Types



• C# provides us with the is operator 
– returns true if an object is an instance of a type

• The as operator attempts to cast an object to a specified type
– returning the instance cast to the type 

– null if not possible

– does not raise an exception

Is and As



Casting Demo



Microsoft 

Virtual 

Academy

Manipulating Strings



• A string object is an immutable (unchangeable) sequence of 

characters.

• Any method that manipulates a string, actually returns a new 

string.

• The StringBuilder class provides a mutable implementation of a 

string.

What is a string?



StringBuilder (012)



• The string class provides many 

methods for manipulating strings

• Bear in mind that new string 

objects are returned for:
– Replace

– ToUpper

– Concat

String Manipulation



• Regular expressions are a specialized syntax to find and replace 

patterns in strings

Regular Expressions



• Controlling Programmatic Flow

• Manipulating Types and Strings

Module Recap



©2013 Microsoft Corporation. All rights reserved. Microsoft, Windows, Office, Azure, System Center, Dynamics and other product names are or may be registered trademarks and/or trademarks in 

the U.S. and/or other countries. The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because 

Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information 

provided after the date of this presentation. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.


