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• Controlling Programmatic Flow

• Manipulating Types and Strings
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Controlling Programmatic Flow



• Many statements impact program flow:
– Selection statements

• if, else, switch

– Iteration statements

• do, for, foreach, in, while

– Jump statements

• break, continue, default, goto, return, yield

Controlling Flow



• Selection statements evaluate Boolean 

expressions and direct execution

• If statements can be nested within other 

if statements. 

Selection Statements : if



• The ternary or conditional operator can 

be used as if statement shorthand.

Selection Statements :ternary



Switch (008)



• while and do-while statements execute 

a body of code if the expression 

evaluates to true.
– while evaluates the expression before 

executing the body, so the body may 

execute 0 or more times.

– do-while evaluates the expression after the 

first execution of the body, so the body 

executes at least once

Iteration Statements: while, do-while



• for loops are similar to while loops

• for loops include clauses that execute 

before the loop begins and after every 

iteration:
– Initialization clause – typically used to 

initialize one of more loop variables

– Iteration clause – typically used to update 

the loop variable

Iteration Statements: for



• Foreach loop iterates over each element 

in an enumerable object
– Array, Collection, List<T>

Iteration Statements: foreach



• Jump statements redirect execution
– break ends a loop or exits a switch

– continue skips a loop iteration and starts the next iteration

– goto transfers execution to a position marked by a label

– return exits a method

– throw raises an exception

Jump Statements



Iteration, break and continue (010)



Microsoft 

Virtual 

Academy

Manipulating Types



• Casting allows us to work with types in a general sense – as their 

base object or as an instance of an interface implementation.

• We can explicitly attempt to cast an object to another type 
– An advantage of strong typing is that the compiler often knows when a 

cast is possible. It doesn’t always know.

– Compilation will fail if the compiler detects an invalid cast.

• But, what about scenarios that the compiler can’t detect?

Casting Types



• In this scenario, instances of Class2 and 

Class3 can be cast an instance of Class1.

• However, an instance of Class2 can 

never be cast to Class3.

• If Class2 is cast to Class1, can it then be 

cast to Class3?

Casting Types



• C# provides us with the is operator 
– returns true if an object is an instance of a type

• The as operator attempts to cast an object to a specified type
– returning the instance cast to the type 

– null if not possible

– does not raise an exception

Is and As



Casting Demo
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Manipulating Strings



• A string object is an immutable (unchangeable) sequence of 

characters.

• Any method that manipulates a string, actually returns a new 

string.

• The StringBuilder class provides a mutable implementation of a 

string.

What is a string?



StringBuilder (012)



• The string class provides many 

methods for manipulating strings

• Bear in mind that new string 

objects are returned for:
– Replace

– ToUpper

– Concat

String Manipulation



• Regular expressions are a specialized syntax to find and replace 

patterns in strings

Regular Expressions



• Controlling Programmatic Flow

• Manipulating Types and Strings

Module Recap
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