
02 | Features of C#, Part 1

Jerry Nixon | Microsoft Developer Evangelist

Daren May | President & Co-founder, Crank211



• Constructing Complex Types

• Object Interfaces and Inheritance

• Generics

Module Overview



Microsoft 

Virtual 

Academy

Constructing Complex Types



• A class or struct defines the template for an object.

• A class represents a reference type

• A struct represents a value type

• Reference and value imply memory strategies

Classes and Structs



• A struct defines a value type. 

Struct



• Use structs if:

– instances of the type are small

– the struct is commonly embedded in another type

– the struct logically represent a single value

– the values don’t change (immutable)

– It is rarely “boxed” (see later)

• Note: structs can have performance benefits in computational 

intensive applications.

When to use Structs



• A class defines a reference type (or 

object). 

• Classes can optionally be declared as:
– static – cannot ever be instantiated

– abstract – incomplete class; must be 

completed in a derived class

– sealed – cannot be inherited from

Class



• A class definition can be split into 

multiple source files.

• At compile time, these multiple parts 

are combined.

• Often used in code generation

Partial Classes



• All types and members have an accessibility level:

Access Modifiers

Keyword Accessibility Level

public can be accessed by any code in the same 

assembly or any other assembly that references it

private can only be accessed by code in the same class or 

struct

protected can only be accessed by code in the same class or 

struct or in a class derived from the class

internal can be accessed by any code in the same 

assembly, but not from any other assembly



• Properties encapsulate access to an 

element of an object’s data.
– If a Animal has a Name, the value of the 

Name is accessed via the get accessor.

• Properties may explicitly encapsulate 

access to a backing field

• Properties may use the short-hand 

syntax for simple field access.

Properties



• Methods expose the functions that an 

object performs; what the object does. 
– If a Lion can make a sound, then the Lion 

class exposes the MakeSound method.

Methods



• Methods are declared in a class or 

struct by specifying:
– the access level

– any modifiers

– the return type

– the name

– any parameters

• The declaration of MakeSound states it 

is publically accessible, has no return 

type (void) and has no parameters.

Method Signature



• An argument is data passed to a 

method’s parameter when it is invoked.

• When calling methods, we must supply 

arguments that match the parameter 

type.

Method Parameters



• Default parameter values allow 

developers to supply typical values

• Default parameter values allow 

developers to hint at usage

• Default parameters reduces the 

number of method overrides

• Default parameters allow parameters to 

be optional to the caller

Parameter Default Values



• Named arguments allow developers to 

specify arguments in any order

• Named arguments allow developers to 

easily handle optional arguments

• Positional and named arguments can 

be mixed
– positional arguments must be supplied first.

Named Arguments



• Events notify an observer that 

something has occurred in the object.
– A Processor object exposes Completed 

event and raises it whenever the Process 

method completes.

Events



• A delegate is an object that knows how to call a method

• A delegate type defines the method signature.

• An event is a list of delegates
– Raising an event invokes every delegate (multicasting)

• An EventHandler is a delegate. It matches the expected method 

signature for an event.

Delegates, Multicasting & EventHandler



Microsoft 

Virtual 

Academy

Object Instances and Inheritance



• Classes can optionally be declared as:
– static – can never be instantiated

– abstract – can never be instantiated; it is an incomplete class

– sealed – all classes can be inherited unless marked as sealed

• Virtual Methods
– Virtual methods have implementations

– They can be overridden in derived class.

Inheritance



• Class1 defines one property: Name

• Class2 inherits Name from Class1 and 

defines Age.

• Class3 inherits Name from Class1 (via 

Class2) and Age from Class2, as well as 

defines Address.

• So an instance of Class3 has 3 

properties:
– Name

– Age

– Address

Example Inheritance Hierarchy



Understanding virtual, override and new (037)



• When a class or struct is created, a constructor is called.

• Unless a class is static, the compiler generates a default 

constructor if not supplied in code.

• Constructors are invoked by using the new keyword.

• Constructors may require parameters.

• More than one constructor can be defined.

• Constructors can be chained together

• Base class constructors are always called (first)

Creating Object Instances





• An interface defines a set of related 

functionality that can belong to one or 

more classes or structs.

Interfaces



Microsoft 

Virtual 

Academy

Generics



• Generics introduce to the .NET 

Framework the concept of type 

parameters

• Generics make it possible to design 

classes and methods that defer type 

specification until the class or method is 

declared

• One of the most common situations for 

using generics is when a strongly-typed 

collection is required. 
– lists, hash tables, queues, etc.

Generics



• Boxing is the act of converting a value 

type to a reference type.

• Unboxing is the reverse 
– Unboxing requires a cast.

• Boxing/Unboxing copies the value.

• Boxing is computationally expensive 
– avoid repetition

• Generics help avoid these scenarios

Boxing / Unboxing



• You can create your own custom generic classes.

• When creating a generic class, consider:
– Which types to generalize

– What constraints to apply

– Whether to create generic base classes

– Whether to create generic interfaces

• Generic methods may also be created within non-generic 

classes

Generic Classes, Interfaces and Methods





• Constructing Complex Types

• Object Interfaces and Inheritance

• Generics

Module Recap



©2013 Microsoft Corporation. All rights reserved. Microsoft, Windows, Office, Azure, System Center, Dynamics and other product names are or may be registered trademarks and/or trademarks in 

the U.S. and/or other countries. The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because 

Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information 

provided after the date of this presentation. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.


